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1 Bézout’s Theorem

Definition 1.1. Let K be a field. We define n-dimensional affine space over K to be

An
K = { (a1, . . . , an) | ai ∈ K }

Definition 1.2. Let K be a field. A subset V ⊆ AK
n is called an affine variety if there

exist polynomials f1, . . . , fm ∈ K[X1, . . . , Xn] such that

V = { (a1, . . . , an) ∈ An
K | fi(a1, . . . , an) = 0 ∀ 1 ≤ i ≤ m }

Let K be a field. Recall that a polynomial f ∈ K[X1, . . . , Xn] is called irreducible if
there does not exist two polynomial g, h ∈ K[X1, . . . , Xn] of degree greater than or equal to
one such that f = gh. Furthermore, since K is a field, K[X1, . . . , Xn] is a principal ideal
domain and, in particular, a unique factorisation domain.

Definition 1.3. Let K be a field and f(X) =
∑n

i=0 aiX
i, g(X) =

∑m
i=0 biX

i ∈ K[X] be
polynomials such that anbn 6= 0. We define the resultant of f(X) and g(X) to be

R[f, g] = amn b
n
m

∏
i,j

(αi − βj)

where the αi and βj are the roots of f and g respectively.

It is clear from the definition of the resultant that two polynomials f and g have a
common root if and only if their resultant vanishes.

Proposition 1.4. Let K be a field and f =
∑n

i=0 aiX
i, g =

∑n
i=0 biX

i ∈ K[X] be polyno-
mials. Then R[f, g] is equal to the determinant of the Sylvester matrix

an an−1 · · · a1 a0 0 · · · 0 0
0 an an−1 · · · a1 a0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 0 0 0 an an−1 · · · a1 a0
bm bm−1 · · · b1 b0 0 · · · 0 0
0 bm bm−1 · · · b1 b0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 0 0 0 bm bm−1 · · · b1 b0
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Proof. The resultant vanishes if and only if f and g have a common root. This means their
greatest common divisor is non-trivial. Hence there exists polynomials r(X) and s(X) of
degree at most m− 1 and n− 1 respectively such that f(X)r(X) + s(X)g(X) = 0. We may
consider the m + n coefficients of r(X) and s(X) as unknowns which gives us a system of
m + n homogeneous equations in m + n unknowns. This system of equations has a non-
trivial solution if and only if the determinant of the Sylvester matrix vanishes. Now the
determinant and R[f, g] are homogeneous expressions of degree m in the ai and degree n in
the bi so they must be equal up to a constant. To see that the constant is in fact 1, we need
only consider the coefficient of the term amn b

n
0 .

Proposition 1.5. Let K be a field and f, g ∈ K[X, Y ] be polynomials of degree n and m
respectively. If the number of solutions to f(X, Y ) = g(X, Y ) = 0 is finite then it is at most
nm.

Proof. This is tautologically true if |K| < ∞. Hence suppose that K is an infinite field.
Since the number of solutions to f(X, Y ) = g(X, Y ) = 0 is finite, there exists a line through
the origin, say l, such that any line parallel to l contains only one solution of the equation.
We may thus perform a linear change of coordinates so that every solution to f(X, Y ) =
g(X, Y ) = 0 has a different X-coordinate. Now consider f and g as elements of K[X][Y ].
In other words, f and g are polynomials in Y over K[X]. Writing this explicitly we have

f(X, Y ) =
n∑
i=0

fi(X)Y i, g(X, Y ) =
m∑
j=0

gj(X)Y j

where deg(fi) ≤ n− i and deg(gj) ≤ m− j. Now, R[f, g] ∈ K[X]. By definition, R[f, g] has
a root at X = c if and only if f(c, Y ) and g(c, Y ) have a common root. Hence the number of
solutions of the equation f(X, Y ) = g(X, Y ) = 0 is at most the number of roots of R[f, g].
We claim that R[f, g] has degree at most mn whence the theorem will follow. Indeed, for
simplicity we may assume that deg(fi) = n− i and deg(gi) = m− i. Then the diagonal of
the Sylvester matrix contributes a polynomial of degree mn to the determinant. All other
terms of the determinant are given by polynomials of degree at most mn. The proposition
is thsu proven.

Proposition 1.6. Let K be a field. Suppose that f ∈ K[X, Y ] is irreducible and g ∈ K[X, Y ]
is an arbitrary polynomial. If f does not divide g then f(X, Y ) = g(X, Y ) = 0 has a finite
number of solutions.

Proof. Suppose that X appears with at least degree 1 in f . We claim that f(X, Y ) is
irreducible in K(Y )[X]. Suppose that f = h1h2 where h1h2 ∈ K(Y )[X]. Let a1(Y ), a2(Y ) ∈
K[Y ] be the denominators of h1, h2. Let hi represent the hi multiplied by the ai. Then
h1, h2inK[X, Y ] and we have

a1a2f = h1h2

Since f is irreducible and K[X, Y ] is a UFD, we must have that f |h1 or f |h2. But h1 and h2
both have degree of X less than f which is a contradiction. Hence f must be irreducible in
K(Y )[X]. By similar argumentation, we see that g is not divisible by f in K(Y )[X]. Hence
f and g have no common factors in K(Y )[X]. Hence there must exist two polynomials
u, v ∈ K(Y )[X] such that

fu+ gv = 1
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Let a ∈ K[Y ] be the least common multiple of all the denominators of the coefficients of u
and v. Denote u = au and v = av. We then have that

fu+ gv = a

Hence the Y -coordinates of all solutions of f(X, Y ) = g(X, Y ) = 0 must all be roots of
a ∈ K[Y ]. Since f(X, Y ) can have only finitely many solutions on any line Y = c, it must
then have finitely many solutions (X, Y ).

Theorem 1.7 (Bézout’s Theorem). Let K be a field and f, g ∈ K[X, Y ] be polynomials with
no common factors. Then the number of solutions to f(X, Y ) = g(X, Y ) = 0 is at most
deg(f) deg(g).

Proof. Since K[X, Y ] is a UFD, we can write f = f1, . . . , fn for some irreducible polynomials
fi ∈ K[X, Y ]. We may apply Proposition 1.6 to see that fi(X, Y ) = g(X, Y ) = 0 has
only finitely many solutions for all 1 ≤ i ≤ n. Appealing to Proposition 1.5, we see that
fi(X, Y ) = g(X, Y ) = 0 has at most deg(fi) deg(g) solutions whence f(X, Y ) = g(X, Y ) = 0
has at most deg(f) deg(g) solutions.

Definition 1.8. Let K be a field and f(X, Y ) ∈ K[X, Y ] a polynomial. We call the set of
solutions to f(X, Y ) = 0 a curve. The degree of a curve is the degree of the polynomial
defining it. If deg(f) = 2 then f(X, Y ) = 0 is a conic. If deg(f) = 3 then f(X, Y ) = 0 is a
cubic.

Theorem 1.9 (Pascal’s Theorem). Let K be a field and f(X, Y ) = 0 a conic over K. If
A1, . . . , A6. Let AiAj denote the unique line passing through the points Ai and Aj. Then,
up to renumbering, three points A1A2 ∩A4A5, A2A3 ∩A5A6 and A3A4 ∩A6A1 all lie on one
line.

Proof. Let L1,M1, L2,M2, L3,M3 be linear functions that vanish on the lines
A1A2, A2A3, A3A4, A4A5, A5A6, A6A1 respectively. Consider the following family of polyno-
mials indexed by λ:

Gλ = L1L2L3 + λM1M2M3

then Gλ = 0 is a cubic that contains the points A1, . . . , A6 and the three points listed in
the theorem. Fix a point p on the conic f = 0 distinct from the Ai and let λ0 be such
that Gλ0 = p. Then Gλ0 = 0 and f = 0 have 7 points in common, namely p,A1, . . . , A6.
By Bézout’s Theorem Gλ0 = 0 and f = 0 have a non-trivial greatest common divisor. We
claim, in fact, that f divides Gλ0 . If f is irreducible then this is clear. If not then f = 0 is
the union of two lines in the plane. We may choose p so that exactly one of p,A1, . . . , A6 lie
on the intersection of these two lines1 hence f decomposes into two linear functions, both of
which vanish at one of the points p,A1, . . . , A6. Since Gλ0 also vanishes at all these points,
it must be divisible by both the factors of f and is thus divisible by f itself. But f is a conic
so there exists a line L such that Gλ0 = FL = 0. Clearly, the three points cannot lie on F
so they must lie on L and we are done.

1here we assume that lines always intersect, possible at a so-called point at infinity. The reasoning for
this will be clear once we study projective space.
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2 Kakeya Conjectures

Definition 2.1. Let K be a finite field and E ⊆ Kn. We say that E is a Kakeya subset
of Kn if E contains a unit line in every direction.

Lemma 2.2. Let R be a ring. Then the vector space of polynomials in R[X1, . . . , Xn] of
degree at most d has dimension

(
n+d
d

)
.

Proof. We prove the lemma by using the standard stars and bars argumentation of combi-
natorics. Clearly, the basis of such a vector space is given by all monomials in R[X1, . . . , Xn]
of degree at most d. If we homogenise these monomials using a dummy variable X0 then,
obviously, we will still have the same number of monomials. Hence it suffices to count the
number of monomials in R[X0, X1, . . . , Xn] whose degree is d. If Xa0

0 X
a1
1 . . . Xan

n is such a
monomial then we have the equation

a0 + a1 + · · ·+ an = d

We seek to count the number of solutions to this equation for non-negative ai ∈ Z. To do
this, we notice that this is the same as taking n + d places and filling them with d ‘stars’
and n ‘bars’. For example, if d = 3 and n = 2 then

{∗ ∗ | ∗ |}

corresponds to the solution 2 + 1 + 0 = 3. But this is the same as taking n + d arbitrary
elements and counting the number of distinct configurations there exists with n of the
elements fixed. This is equal to

(
n+d
n

)
which is in turn equal to

(
n+d
d

)
and we are done.

Proposition 2.3. Let K be a field and L ⊆ K[X1, . . . , Xn] be a linear subspace. Let
E ⊆ Kn be such that |E| < dim(L). Then there exists a non-zero polynomial in L that
vanishes on E. Furthermore, if M is the subspace of polynomials in L that vanish on E
then dim(M) ≥ dim(L)− |E|.

Proof. Let KE denote the K-vector space of K-valued functions on E. Define the mapping

e : L 7→ KE

which sends a polynomial in f(X1, . . . , Xn) ∈ L to the function f(x1, . . . , xn) ∈ KE. The
kernel of this mapping is clearly M . By the rank-nullity theorem, we have dim(L) =
dim(M) + dim(im(e)). The proposition then follows upon realising |E| ≥ dim(im(e)).

Corollary 2.4. Let K be a finite field and E ⊆ Kn subset such that |E| <
(
n+d
d

)
for some

non-negative integer d. Then there exists a non-zero polynomial f ∈ K[X1, . . . , Xn] that
vanishes on E such that deg(f) ≤ d.

Proof. Let Vd be the vector space of polynomials in K[X1, . . . , Xn] of degree at most d. By
Lemma 2.2, the dimension of Vd is

(
n+d
d

)
. The corollary then follows upon application of

2.3.

Lemma 2.5. Let K be a finite field and f ∈ K[X1, . . . , Xn] a polynomial of degree less than
|K|. If f vanishes on all of Kn then f is identically zero.
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Proof. We prove the lemma by induction on the number of indeterminates n. If n = 1 then
the lemma is true since any polynomial of degree less than |K| that vanishes on all of K
must be identically zero. Suppose the lemma is true for arbitrary n− 1. We may write f in
the form

f =

|K|−1∑
i=0

X |K|−i−1n fi(X1, . . . , Xn−1)

where fi is a polynomial of degree at most i. Fix some (x01, . . . , x
0
n−1) ∈ Kn−1. Then

f(x01, . . . , x
0
n−1, Xn) is a polynomial in one variable Xn of degree less than |K|. This poly-

nomial must be identically zero which means that fi(x
0
1, . . . , x

0
n−1) = 0 for all i. By the

induction hypothesis, fi is identically zero for all i. Hence f is also identically zero.

Proposition 2.6. Let K be a finite field and f ∈ K[X1, . . . , Xn] a polynomial of degree at
most |K| − 1 that vanishes on some Kakeya set E ⊆ Kn. Then f is identically zero.

Proof. Suppose that f is not identically zero. Then f has strictly positive degree. We may
write f as a sum of its individual homogeneous components

f =
d∑
i=0

fi

where 1 ≤ d ≤ |K| − 1. Let v = (v1, . . . , vn) ∈ Kn\ { 0 }. Since E is a Kakeya set, there
exists some xv = (x1, . . . , xn) ∈ Kn such that

{xv + tv | t ∈ K } ⊆ E

By hypothesis, f vanishes on E so f(xv + tv) = 0 for all t ∈ K. This is a polynomial in t
of degree |K| − 1 which vanishes on all of K so it must be identically zero. We claim that
the coefficient of td is equal to fd(v). Indeed

f(xv + tv) =
d−1∑
i=0

fi(xv + tv) + fd(xv + tv) =
∑
i<d

cit
i + tdfd(v)

for some ci ∈ K. Hence for all v ∈ Kn\ { 0 } , fd(v) = 0. Furthermore, since fd is
homogeneous of degree d > 0, it also vanishes at 0. Hence fd(v) vanishes for all v ∈ Kn. By
Lemma 2.5, fd(v) is thus identically zero which is a contradiction to the assumption that f
is not identically zero.

Theorem 2.7 (Kakeya Conjecture - Dvir’s Theorem). Let K be a finite field and E ⊆ Kn

a Kakeya set. Then there exists a cn > 0 such that |E| ≥ cn|Kn|.

Proof. We claim that E has cardinality at least
(|K|+n−1
|K|−1

)
. Indeed, suppose that |E| <(|K|+n−1

|K|−1

)
. Then Corollary 2.4 implies that there exists a non-zero polynomial of degree

|K| − 1 in K[X1, . . . , Xn] that vanishes on E. But Proposition 2.6 implies that any such
polynomial must be identically zero which is a contradiction. Hence the cardinality of E is
at least

(|K|+n−1
|K|−1

)
. Now, (

|K|+ n− 1

|K| − 1

)
=

(|K|+ n− 1)!

(|K| − 1)!n!
≥ |K|

n

n!

so cn = 1/n! and we are done.
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3 Projective Space

Definition 3.1. Let K be a field. Define an equivalence relation ∼ on An+1
K \ { 0 } where

(a1, . . . , an+1) ∼ (b1, . . . , bn+1) if and only if there exists λ ∈ K× such that ai = λbi for all
1 ≤ i ≤ n+ 1. We define n-dimensional projective space, denoted PnK , to be the set of
all equivalence classes of this equivalence relation.

Lemma 3.2. Let K be a field. Then PnK = An
K ∪ Pn−1K .

Proof. An
K embeds in PnK by the inclusion mapping (a1, . . . , an) 7→ [(1, a1, . . . , an)]. The

image of An
K is clearly all of PnK except for the equivalence classes of ordered pairs with

zero x0 coordinates. We shall refer to such equivalence classes as the points at infinity
of PnK . It is easy to see that the set of all points at infinity of PnK are ‘isomorphic’ to Pn−1K .
Indeed, there is a bijection between the equivalence classes of (0, x2, . . . , xn) in PnK and the
equivalence classes of (x2, . . . , xn) in Pn−1K .

Corollary 3.3. PnK = An
K ∪ · · · ∪ A0

K.

Definition 3.4. Let K be a field and Wm+1 ⊆ An+1
K a linear subspace. Then the set of all

lines through 0 in Wm+1 is a linear subspace of Pm called a projective hyperplane. In
particular, if m = 1 then such a subspace is a projective line.

Proposition 3.5. Let K be a field. Then the intersection of any two linear subspaces
PlK ,PmK ⊆ PnK is a linear subspace of dimension at least l +m− n.

Proof. PlK ,PmK and PnK are all projective spaces arising from Al+1
K ,Am+1

K and An+1
K . Now,

dim(Al+1
K ∩ Am+1

K ) = dim(Al+1
K ) + dim(Am+1

K )− dim(Al+1
K + Am+1

K )

≥ l + 1 +m+ 1− (n+ 1) = l +m− n+ 1

Hence projecting Al+1
K ∩ Am+1

K down we get a linear subspace of PnK of dimension at least
l +m− n.

From this proposition we see that any two hyperplanes in projective space intersect. In
particular, looking back to Pascal’s theorem, we may justify the assumption that all lines
intersect, possibly at a so-called point at infinity.

Theorem 3.6 (Desargue’s Theorem). Let K be a field and a, b, c, A,B,C ∈ P3
K points not

all contained in one plane. Furthermore, suppose that no three of the points all lie on one
line. Suppose that the lines aA, bB, cC all intersect at a point. Then the points ab ∩ AB,
bc ∩BC, ca ∩ CA all lie on one line.

Proof. By assumption there exists unique planes abc and ABC that contain the points
a, b, c and A,B,C respectively. We claim that the intersection of abc and ABC contains the
desired points. We have ab ⊆ abc and AB ⊆ ABC so ab ∩ AB ⊆ abc ∩ ABC. A similar
argument shows that the other two points also line on such an intersection.

Proposition 3.7. Let K be a field and Pk,Pl,Pm be linear subspaces of PnK such that m +
l + k ≥ n− 1. Then there exists a projective line that intersects all three of Pk,Pl,Pm.

Proof. First suppose that Pl ∩ Pm = ∅. Then there always exists a projective line joining
a point of such an intersection to a point of Pk and we are done. Hence assume their
intersection is trivial.
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Let P be the minimal subspace of PnK that contains both Pl and Pm. It is easy to see
that such a subspace is the union of all projective lines connecting points of Pl and Pm and
is of dimension of l +m+ 1. By hypothesis we have

dim(P ∩ Pk) = dim(P) + dim(Pk)− dim(P + Pk)
≥ l +m+ 1 + k − n ≥ 0

and thus P ∩ Pk 6= ∅ so there exists a projective line intersecting all three spaces.

Definition 3.8. Let K be a field and p ∈ PnK a point. Let (λa0, . . . , λan) be a representative
of p in An+1

K . Then we say that [a0 : . . . : an] is a homogeneous coordinate of p.

Definition 3.9. Let K be a field and f ∈ K[X0, . . . , Xn] a homogeoneous polynomial of
degree d. We define the hypersurface defined by f to be the subset of PnK given by

Xf = { [a0 : . . . : an] ∈ PnK | f(a0, . . . , an) = 0 }

We define the degree of Xf to be the degree of its defining polynomial.

Example 3.10. Let K be a field and f ∈ K[X0, . . . , Xn] a homogeneous polynomial of
degree 1. Then Xf = Pn−1.

Definition 3.11. Let K be a field and V ⊆ PnK a subset. V is said to be a projective
variety if there exist homogeneous polynomials f1, . . . , fN ∈ K[X0, . . . , Xn] such that

V = { [a0 : . . . : an] ∈ PnK | fi(a0, . . . , an) = 0 ∀ 1 ≤ i ≤ n }

Definition 3.12. Let K be a field and f ∈ K[X1, . . . , Xn] a polynomial of degree d. We
define the homogeneous completion of f to be Xd

0f(X1/X0, . . . , Xn/X0).

Recall that PnK = An
K ∪ Pn−1K and that we refer to Pn−1K as the points at infinity of AK .

Homogeneous equations over PnK are related to inhomogeneous equations over An
K in the

following way. Replacing X0 with 1 in a homogeneous equation gives an inhomogeneous
equation. Passing the the homogeneous completion of an inhomogeneous equation gives a
homogeneous equation.

Example 3.13. Consider the two circles X2
1 + X2

2 = 1 and X2
1 + X2

2 = 4 in C2. It is
easy to see that these two circles do not intersect in C2. We may pass to the homogeneous
completion of these equations to get X2

1 + X2
2 = X2

0 and X2
1 + X2

2 = 4X2
0 . It then follows

that these two circles intersect at the points at infinity given by homogeneous coordinates
[0 : 1 : ±i].

4 Quadratic Forms and Conics

Throughout this section, we assume all fields have characteristic different from 2.

Definition 4.1. LetK be a field. A quadratic form is a homogeneous polynomial of degree
2 in any number of indeterminates. A quadratic form F (X1, . . . , Xn) is diagonal if F =∑

i=1 aiX
2
i for some ai ∈ K. Furthermore, a quadratic form is said to be diagonalisable if

there exists a basis for Kn in which F is diagonal.

Proposition 4.2. Let K be an algebraically closed field and F (X1, . . . , Xn) a non-zero
quadratic form over Kn. Then there exists a K-basis of Kn, say v1, . . . , vn, such that
F (v1X1 + · · ·+ vnXn) =

∑n
i=1X

2
1 + · · ·+X2

i for some 1 ≤ i ≤ n.
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Proof. Consider the function

Q(u, v) =
F (u+ v)− F (u)− F (v)

2

We first claim that Q(u, v) is a symmetric bilinear form on Kn.
Q is clearly symmetric by virtue of its definition. For simplicity, we shall check the

calculation for bilinearity when F is in two indeterminates. We can always write F in the
form

F (X1, X2) = aX1X2 + bX2
1 + cX2

2

and so

Q(u, v) =
(a+ b+ c)(u+ v)2 − (a+ b+ c)u2 − (a+ b+ c)v2

2
= (a+ b+ c)uv

which is clearly linear in both u and v. Q(u, v) is also positive definite since it is a homoge-
neous polynomial of degree 2.

We construct the basis by a Gram-Schmidt process. Choose a v1 ∈ K such that f(v1) =
1. This can always be done since we may take v′ to be such that F (v′) 6= 0 and then take
v1 = v′/

√
F (v1). We then have that Q(v1, v1) = 1.

Now suppose that we have constructed linearly independent vectors (v1, . . . , vk) such
that Q(vi, vj) = δij. Let Vk denote the subspace of Kn that is spanned by these vectors. We
claim that Kn = Vk ⊕ V ⊥k where

V ⊥k = { v ∈ V | Q(v, u) = 0 ∀u ∈ Vk }

Clearly, Q is non-degenerate on Vk so Vk ∩ V ⊥k = { 0 }. We just need to show that every
element of Kn can be expressed as the sum of an element of Vk and an element of V ⊥k . To
this end, fix x ∈ V and let

y = x−
k∑
i=1

Q(x, vi)vi

Then

Q(y, vj) = Q(x, vj)−Q(x, vj)Q(vj, vj) = 0

whence y ∈ V ⊥k . Hence x = y +
∑k

i=1Q(x, vi)vi ∈ V ⊥k + Vk and thus Kn = Vk ⊕ V ⊥k .
Now, if the restriction of Q to V ⊥k is 0 then we can let vk+1, . . . , vn be any basis for V ⊥k

and thus v1, . . . , vn is a basis for V satisfying Q(vi, vj) = δij for all 1 ≤ i ≤ j ≤ k and
Q(vi, vk) for all i > k. If not then we can repeat this process until Q restricts to 0 on an
orthogonal subspace.

Finally, we have that

F

(
n∑
i=1

viXi

)
= Q

(
n∑
i=1

viXi,
n∑
i=1

viXi

)
= X2

1 + · · ·+X2
k
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Corollary 4.3. Let K be a field and C an irredicuble conic over P2
K. Then there exist

homogeneous coordinates such that F is given by X0X2 −X2
1 = 0.

Proof. By Proposition 4.2, there exists coordinates such that the conic is given by one of

Y 2
0 = 0, Y 2

0 + Y 2
1 = 0, Y 2

0 + Y 2
1 + Y 2

2 = 0

But the first two cases are the equations for reducible conics so we must be in the third
case. The coordinates X1 = iY1, X0 = Y0 − iY2 and X2 = Y0 + iY2 bring the conic into the
desired form.

Corollary 4.4. Let K be a field and C an irreducible conic over P2
K. Then C can be put

into bijection with P1
K. Such a mapping is called a rational parametrisation of C.

Proof. By Corollary 4.3, we may assume that the conic takes the form

X0X2 −X2
1 = 0 (1)

We then have the map

ϕ : P1
K → C

[u0 : u1] 7→ [u20 : u0u1 : u21]

We claim that this map has inverse

ϕ−1 : C → P1
K

[u0 : u1 : u2] 7→ [u0 : u1] or [u1 : u2]

Note that the first of these two maps is not defined on [0 : 0 : 1] and the second is not
defined on [1; 0; 0]. They however coincide everywhere else by virtue of 1 . We now check
their compositions. We have

ϕ−1 ◦ ϕ([u0 : u1]) = ϕ−1([u20 : u0u1 : u21]) = [u0 : u1]

A similar argument shows the reverse composition.

Proposition 4.5. Let K be a field and A1, . . . , A5 ∈ P2
K points. Then

1. there exists a conic over P2
K that passes through them

2. there exists a unique conic through the Ai if and only if no 4 of the points lie on one
line

3. the conic is irreducible if and only if no three of the points lie on one line

Proof. Let a1, . . . , a5 be points in A3
K on the lines through the origin corresponding to

A1, . . . , A5. Note that the set of all homogeneous polynomials of degree 2, together with
the 0 vector, is a linear subspace of K[X0, X1, X2]. It is easy to see that this vector space
has dimension 6 over K. Appealing to Proposition 2.3, we see that the linear subspace of
K[X0, X1, X2] consisting of all homogeneous polynomials of degree 2 that vanish at the ai
has dimension over K at least 1. Hence there exists at least one conic passing through the
ai and thus there exists at least one conic passing through the Ai.

Now suppose, without loss of generality, that A1, . . . , A4 all lie on one projective line
L = 0. If L′ = 0 is any line containing A5 then LL′ = 0 is a conic that contains A1, . . . , A5.
Hence there are more than one conics that pass through A1, . . . , A5 in this case.
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Conversely, suppose that there does not exist a projective line passing through any four
of A1, . . . , A5. To prove the conic is unique, we shall consider the case where no three of
A1, . . . , A5 lie on line separately.

First suppose that no three of A1, . . . , A5 lie on one line and that C1 and C2 are two
conics, given by F1 = 0 and F2 = 0 respectively, containing A1, . . . , A5. We first claim that
given any point p ∈ P2

K , there exists a point [s : t] ∈ P1
K such that (sF1 + tF2)(p) = 0.

Indeed, if F2(p) = 0 then we may take [s : t] = [0 : 1]. Else we can take s = 1 and

t = −F1(p)

F2(p)

Now choose p on the line L1 joiningA1 andA2 and let F = sF1+tF2 = 0 be the corresponding
conic. The intersection of F with L1 contains the three points p,A1 and A2. By Bézout’s
Theorem, F must be reducible and we have F = L1L for some line L. Since L1 cannot
contain any of the A3, A4, A5, they must be on L. But this contradicts the assumption that
no three of the Ai lie on one line. Hence the conic must be unique.

Finally, let F = 0 be a conic passing through the five Ai. If F were reducible then it
would decompose into two lines F = L1L2 = 0. Clearly, one of the Li must contain three
of the points. Conversely, if three of the points lie on one line L then Bézout’s Theorem
implies that L divides F and thus F is reducible.

5 Cubic Curves

Proposition 5.1. Let K be an algebraically closed field of characteristic zero. Then any
two curves over P2

K intersect.

Proof. Let C1 and C2 be two curves over P2
K given by the homogeneous polynomials F,G ∈

K[X0, X1, X2]. We need to exhibit a non-zero (a0, a1, a2) ∈ A3
K such that F (a0, a1, a2) =

G(a0, a1, a2) = 0. In order to do this, we shall consider the resultant of these two polynomi-
als. Without loss of generality, we may assume that F (1, 0, 0) and G(1, 0, 0) are non-zero.
Furthermore, we may write (scaling if necessary)

F (X0, X1, X2) =
n∑
i=0

Fi(X1, X2)X
i
0, G(X0, X1, X2) =

m∑
i=0

Gi(X1, X2)X
i
0

for some Fi, Gi ∈ K[X1, X2]. By definition, it is easy to see that the resultant of F and
G with respect to X0 is a homogeneous polynomial in X1 and X2 of degree nm. Hence
if we fix non-zero a2 ∈ K, we get a polynomial in X0. Since K is algebraically closed,
such a polynomial must have a root, say a0. Then R[F,G](a1, a2) = 0 so the polynomials
F [X0, a1, a2] and G[X0, a1, a2] must have a root in common. This means that there exists
non-zero (a0, a1, a2) such that F [a0, a1, a2] = G[a0, a1, a2] = 0 and we are done.

Definition 5.2. Let K be a field and F ∈ K[X0, X1, . . . , Xn] be a homogeneous polynomial.
A point P of the hypersurface F = 0 is said to be singular if

∂F

∂Xi

(P ) = 0

for all 0 ≤ i ≤ n. If some of the derivatives are non-zero then P is said to be smooth. If
all the points of F = 0 are smooth then the hypersurface itself is said to be smooth
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Proposition 5.3. Let K be an algebraically closed field of characteristic 0. Then any smooth
curve over P2

K is irreducible.

Proof. Let C be a smooth curve over P2
K given by F ∈ K[X0, X1, X2]. Suppose, for a

contradiction, that C is reducible. Then F decomposes as F = GH for some G,H ∈
K[X0, X1, X2]. By Proposition 5.1, G and H intersect at some point, say P . Now,

∂F

∂X0

(P ) =

[
∂G

∂X0

H +
∂H

∂X0

G

]
(P ) = 0

and so F = 0 is singular at P which is a contradiction to the smoothness of C. Hence C
must be irreducible.

Definition 5.4. Let K be a field and L a projective line over PnK . If F = 0 is a hypersurface
over PnK then L is said to be tangent to F = 0 if the restriction of F to L has a double
root at some point p.

Definition 5.5. Let K be a field and f ∈ K[X0, X1, . . . , Xn] a polynomial. We define the
Hessian of f to be

Hessf = det

(
∂f

∂Xi ∂Xj

)
0≤i≤j≤n

Theorem 5.6 (Weierstrass Normal Form). Let K be a field an algebraically closed field of
characteristic 0. Let C be a smooth cubic curve over P2

K. Then there exist homogeneous
coordinates so that C is given by an equation of the form

X0X
2
2 = X3

1 + aX2
0X1 + bX3

0

for some a, b ∈ K. In other words, any smooth cubic curve over A2
K is projectively equivalent

to a cubic curve given by

X2
2 = X3

1 + aX1 + b

Proof. Let C be given by the homogeneous polynomial of degree 3 F ∈ K[X0, X1, X2]. By
Proposition 5.1, there exists P ∈ P2

K such that

F (P ) = HessF (P ) = 0 (2)

We may choose coordinates so that P = [0 : 0 : 1] and the line X0 = 0 is tangent to the
curve C at P . Now write F in the following form:

F = F1(X0, X1)X
2
2 + F2(X0, X1)X2 + F3(X0, X1)

where the Fi ∈ K[X0, X1] are homogeneous of degree i. Since C is smooth, F must be
smooth at P and it is thus clear from the above form of the equation that the tangent line
to F at P must be given by F1[X0, X1] = 0. But the coordinates were chosen so that X0 = 0
is the tangent line of F at P so we must have that F1[X0, X1] = cX0. Without loss of
generality, we may assume that c = −1. We now have the curve in the following form:

0 = −X0X
2
2 + (aX2

0 + bX0X1 + cX2
1 )X2 + F3(X0, X1)

11



By Equation 2 we have

HessF (P ) = det

 2a b −2
b 2c 0
−2 0 0

 = −8c

We must therefore have that c = 0. Passing to affine space, we have the equation

X2
2 = aX2 + bX1X2 + F3(1, X1)

Completing the square in X2 and rearranging gives us(
X2 −

a+ bX1

2

)2

=

(
a+ bX1

2

)2

= F3(1, X1)

We may finally make a linear change of coordinates to bring the equation into the form

X2
2 = X3

1 + aX1 + b

for some a, b ∈ K. Passing to the homogeneous completion of this equation gives us the
desired equation for the cubic curve over projective space.

Definition 5.7. Let K be a field and F ∈ K[X0, X1, X2] be a homogeneous polynomial.
We say that a point P on the curve F = 0 is an inflection point if HessF (P ) = 0.

Proposition 5.8. Let K be a field and p1, . . . , p8 ∈ P2
K be points such that no 4 lie on one

line and no 7 lie on one conic. If M is the linear subspace of K[X0, X1, X2] consisting of
homogeneous polynomials of degree 3 that vanish at the pi then dim(M) = 2.

Proof. Let L be the linear subspace of K[X0, X1, X2] consisting of all homogeneous polyno-
mials of degree 3. By Lemma 2.2, this has dimension 10. Hence by Lemma 2.3, we have
dim(M) ≥ 2. Hence assume that dim(M) > 3. We shall consider 3 seperate cases.

First suppose that no 3 points lie on one line and no 6 points lie on one conic. Let L = 0
denote the line passing through p1 and p2. Let q and r be two distinct points, neither of
which are equal to p1 or p2. We can always construct an F ∈ M that vanishes at both q
and r. Hence the cubic F = 0 intersects L = 0 in 4 points. By Bézout’s Theorem, F must
be reducible and we have F = LQ where Q is some conic. We cannot have that p3, . . . , p8
lie on L so they must lie on Q. But by assumption, no 6 points lie on one conic whence we
arrive at a contradiction.

Now suppose that 3 points p1, . . . , p3 lie on one line, say L = 0. Let Q be the unique
conic passing through p4, . . . , p8. Note that F = LQ ∈ M . Since dim(M) > 2, we can
find F1 and F2 such that F, F1 and F2 are linearly independent. Now let p be a point on L
distinct from p1, . . . , p3. We can always find a linear combination of F1 and F2 that vanishes
at p. By Bézout’s Theorem, we must have that such a linear combination is divisible by
L. But then this linear combination is proportional to F which is a contradiction to their
pairwise linear independence.

Finally, suppose that 6 of the points p1, . . . , p6 lie on one conic. Here the argumentation
follows the previous case where we take L to be the line through p7 and p8.

We see that in all cases, we arrive at contradictions so we must have that dim(M) = 2.
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6 Group Law for Cubics

Let K be a field and C a cubic curve over P2
K . We shall define the structure of an abelian

group on C as follows:
Fix a distinguished point O ∈ C. This will act as the identity. Let P and Q be arbitrary

points on C. Let L be the line through P and Q. If L intersects C at a third point, then
denote it P ∗ Q. If not then L is tangent to C at P so let P ∗ Q = P . Now let M be the
line through O and P ∗Q. We let P +Q be the third point of intersection of this line with
C. In other words, P +Q = O ∗ (P ∗Q).

Proposition 6.1. Let K be a field and C a smooth cubic curve over P2
K. Then (C,+) is

an abelian group.

Proof. The commutativity is clear from the definition of +. Furthermore, it is clear that
O+ P = P . Indeed, O+ P = O ∗ (O ∗ P ). Now, the line joining O and P contains a point,
say M . But the line joining M and O must also contain P .

We must now check associativity of +. Let F ∈ K[X0, X1, X2] be the polynomial defining
C. Let P,Q,R ∈ C. We need to show that P + (Q + R) = (P + Q) + R. In other words,
O∗(P ∗(Q+R)) = O∗((P+Q)∗R). This reduces to showing that P ∗(Q+R) = (P+Q)∗R.

Let F1 = 0 be the cubic given by the composition of the three lines (P,Q), (O,Q +
R), (R,P + Q). Let F2 = 0 be the cubic given by the composition of the three lines
(Q,R), (O,P +Q), (P,Q+R). We note that O,P,Q,R, (P ∗Q), (P +Q), (Q ∗R), (Q+R)
all lie on the three cubics F = 0, F1 = 0 and F2 = 0.

Now if 4 of those points were to lie on the same line then C would contain the line that
passess through these points and C would be reducible which is a contradiction to the fact
that C is smooth. The same argumentation shows that no 7 of the points lie on one conic.
Appealing to Proposition 5.8, we see that F, F1 and F2 must be linearly dependent over K.
Hence we may write

F2 = aF + bF1

for some a, b ∈ K. Now, both F and F1 vanish at the point (P + Q) ∗ R whence F2 does
too. But this is only possible if (P +Q) ∗R = P ∗ (Q+R).

Finally, we must prove that inverses exist. Let P ∈ C. If O is not an inflection point of
C then the tangent line to C at O intersects C in some other point, say O∗. Then we have
−P = O∗ ∗ P . If O is an inflection point then −P = O ∗ P .

7 Higher Dimensional Varieties

Definition 7.1. Let K be a field. We define the Segre map to be

σ : PnK × PmK → P(n+1)(m+1)−1
K

([x0 : . . . : xn], [y0 : . . . : ym]) 7→ [x0y0 : . . . : xiyj : . . . : xnym]

The image of this map is written
∑

n,m.

Proposition 7.2. Let K be a field. Then the image of the Segre embedding
∑

n,m ⊆
P(n+1)(m+1)−1
K , given in homogeneous coordinates [Z00 : . . . : Zij : . . . : Znm] is a projec-

tive variety given by the system of homogeneous equations

ZijZkl − ZilZkj = 0
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Proof. Let M be the set of all (n + 1) × (m + 1)-dimensional matrices over K. Define an
equivalence relationship on M , say ∼, where A ∼ B if and only if A = λB for some λ ∈ K×.
It is easy to see that

∑
n,m is the set of all ∼-equivalence classes of matrices of rank 1. Indeed,

any element of P(n+1)(m+1)−1
K is given by homogeneous coordinates which are invariant under

multiplication by scalars. To see that the equivalence classes we are considering are of rank
1, we need only consider the matrix Zij = XiYj. Any row is necessarily a linear combination
of some other row in this matrix whence the rank is at most 1. But we cannot have that
all entries of the matrix are 0 since we are working in projective space so the matrix cannot
have rank 0.

Now, any 2 × 2 minor in a rank 1 matrix must be 0 and we therefore must have that
ZijZkl−ZilZkj = 0. Conversely, if any 2× 2 minor of a matrix is 0 then such a matrix must
have rank 1. It then follows that σn,m is a projective variety given by ZijZkl−ZilZkj = 0.

Corollary 7.3. Let K be a field and X ⊆ PnK and Y ⊆ PmK projective varieties. Then

σ(X × Y ) ⊆ P(n+1)(m+1)−1
K is a projective variety.

Proof. We first observe that we can write X × Y = X × PmK ∩ PnK × Y . It thus suffices
to prove the corollary for the product X × PmK . Furthermore, we may assume that X is a
hypersurface since any variety is necessarily the intersection of hypersurfaces. Hence X is
given by some F ∈ K[X0, . . . , Xn]. It then follows that σ(X×PmK) is given by the intersection
of σ(PnK × PmK) with the hypersurfaces F (Z0i, . . . , Zni) for 0 ≤ i ≤ m.

Recall that given a field K, we can construct the space of so-called bivectors of a vector
space V of dimension n over K, denoted Λ2V . If vectors are line segments then bivectors
can be geometrically interpreted as plane segments. Such bi-vectors are constructed using
the wedge product ∧ on two vectors u, v ∈ V subject to the relations

(α · u) ∧ v = α(u ∧ v), u ∧ v = −v ∧ u
If e1, . . . , en is a K-basis for V then any bivector w can be expressed as

w =
n∑
i=1

n∑
j=1

aijei ∧ ej

for some aij ∈ K. Note that the properties of a bivector impose the condition w ∧ w = 0
for any bivector w.

Definition 7.4. Let K be a field. We define the Grassmannian (m,n) over K to be the set
of all m-dimensional linear subspaces of An

K . This is equivalent to all the m− 1-dimensional
linear subspaces of Pn−1K .

Proposition 7.5. Let K be a field. Then the Grassmannian (2, 4) over K can be naturally
identified with a quadratic hypersurface in P5

K.

Proof. To each two dimensional subspace of A4
K , we may associate a bivector w = u ∧ v

where u, v ∈ A4
K are non-proportional vectors. We may write

w = a12e1 ∧ e2 + · · ·+ a34e3 ∧ e4
Since w ∧ w = 0, we arrive at the following:

a12a34(e1 ∧ e2 ∧ e3 ∧ e4) + a13a24(e1 ∧ e3 ∧ e2 ∧ e4) + a14a23(e1 ∧ e4 ∧ e2 ∧ e3) = 0

Using the fact that u ∧ v = −v ∧ u we have

(a12a34 − a13a24 + a14a23)(e1 ∧ e2 ∧ e3 ∧ e4) = 0

and so we have a12a34− a13a24 + a14a23 = 0. Passing to the coordinate system of P5
K we can

write this as X0X1 −X2X3 +X4X5 = 0.
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8 Hilbert’s Basis Theorem

Definition 8.1. Let R be a ring and I / R an ideal. We define the radical of I to be

√
I = { r ∈ R | rn ∈ I for some n ∈ N }

We say that I is radical if I =
√
I.

Definition 8.2. Let R be a ring. Then R is Noetherian if every ideal of R is finitely
generated.

Lemma 8.3. Let R be a ring. Then the following conditions are equivalent:

1. R is Noetherian

2. Every ascending chain of ideals of R is stationary

3. Every non-empty set of ideals of R has a maximal element.

Proof. We first show that (1) =⇒ (2). Suppose that R is Noetherian and let

I1 ⊆ I2 ⊆ I3 ⊆ . . .

be an ascending chain of ideals in R. Let I be the union of the Ij for all j ≥ 1. Then I is
an ideal and, since R is Noetherian, it is finitely generated say by a1, . . . , an ∈ R. Now, for
all 1 ≤ i ≤ n there exists a j ≥ 1 such that ai ∈ Ij. Let Ik be the largest such ideal. Then
Ik contains all a1, . . . , an whence I ⊆ Ik. We also have the trivial inclusion Ik ⊆ I and we
see that the chain is stationary.

We now show that (2) =⇒ (3). Let I be a non-empty set of ideals of R. Choose an
ideal I1 ∈ I. If I1 is maximal then we are done. If not then I\I1 is non-empty and we may
choose I2 such that I1 ⊆ I2. We may continue in this fashion, forming an ascending chain
of ideals I1 ⊆ I2 ⊆ I3 . . . . By assumption, this chain is stationary at some Ik. Then this Ik
is the desired maximal element of I.

Finally, we show that (3) =⇒ (1). Suppose that every non-empty set of ideals of R has
a maximal element. Let I / R be an ideal. Denote

I = { J ⊆ I | J / R and J is finitely generated }

Clearly I is non-empty since it contains the zero ideal. By assumption, we may choose a
maximal element of I, say J . If I = J then we are done. If not then consider a ∈ I\J . Then
(J, { a }) is a finitely generated ideal contained in I which contains J . This is a contradiction
to the maximality of J . Hence I = J and I is Noetherian.

Theorem 8.4 (Hilbert’s Basis Theorem). Let R be a Noetherian ring. Then R[X] is Noethe-
rian.

Proof. Let I / R[X] be an ideal. We need to show that I is finitely generated. To this end,
let I ′ be the ideal in R generated by the leading coefficients of polynomials from I. Since R
is Noetherian, we must have that I ′ = (a1, . . . , as) for some ai ∈ R.

Let f1, . . . , fs ∈ I be polynomials whose leading coefficients are the ai. Let N be the
maximal degree of the polynomials fi.
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Let J = (f1, . . . , fn)/R[X]. Then for all f ∈ I, there exists a g ∈ J such that deg(f−g) <
N . Hence if R[X]<N is the linear subspace of R[X] consisting of all polynomials of degree
less than N , we see that I is generated by f1, . . . , fs and I ∩ R[X]<N . We can then repeat
the same process restricted to R[X]<N to see that there exist some fs+1, . . . , ft such that
I is generated by f1, . . . , ft and I ∩ R[X]<N−1. Continuing in this way, we obtain finitely
many generators for I.

Corollary 8.5. Let R be a Noetherian ring. Then R[X1, . . . , Xn] is Noetherian.

Corollary 8.6. Let R be a ring and M a finitely generated R-module. Then M is Noethe-
rian.

9 Varieties and Hilbert Nullstellensatz

Definition 9.1. Let K be a field and V ⊆ An
K a subset. We say that V is a affine variety

if there exist polynomials f1, . . . , fm ∈ K[X1, . . . , Xn] such that

V = { (a1, . . . , an) ∈ An
K | fi(a1, . . . , an) = 0 for 1 ≤ i ≤ m }

Definition 9.2. Let K be a field and I / K[X1, . . . , Xn] an ideal. We can define an affine
variety attached to I by

V (I) = { (a0, . . . , an) ∈ An
K | f(a0, . . . , an) = 0 ∀ f ∈ I }

Remark. The above definition makes sense since Hilbert’s Basis Theorem guarantees that
every ideal of K[X1, . . . , Xn] is finitely generated and thus there exist finitely many polyno-
mials defining V (I).

Proposition 9.3. Let K be a field and denote I, J / R = K[X1, . . . , Xn] ideals. Then

1. V ({ 0 }) = An
K , V (R) = ∅

2. If I ⊆ J then V (J) ⊆ V (I)

3. V (I) ∪ V (J) = V (I ∩ J)

4.
⋂
n V (In) = V (

∏
n In)

Proof.

Part 1: V ({ 0 }) = An
K holds since the zero polynomial will vanish at any point of An

K .
Conversely, the ring R cannot be generated by finitely many non-constant polynomials so
we must have that V (R) = ∅.

Part 2: If I ⊆ J then, clearly, J has at least the same number of generators as I. In the
case that I = J , it is clear that V (J) = V (I). In the case that I ( J then J must have more
generators and thus there are more polynomials which define the variety V (J). Having more
polynomials means the freedom of choice of elements of An

K is reduced so we must have that
V (J) ⊆ V (J).

Part 3: We have I ∩ J ⊆ I and so, Part 2 implies that V (I) ⊆ V (I ∩ J). Similarly,
V (J) ⊆ V (I ∩ J). Hence V (I) ∪ V (J) ⊆ V (I ∩ J).
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Conversely, suppose that P ∈ V (I ∩ J) and assume that P 6∈ V (I). Then there exists
f ∈ I such that f(P ) 6= 0. By a similar argumentation, there exists g ∈ J such that
g(P ) 6= 0. Then f ◦ g ∈ I ∩ J but (f ◦ g)(P ) 6= 0 which is a contradiction.

Part 4: Suppose P ∈
⋂
n V (In). Then for each n, there exists a finite number of polynomials

in In, say f
(n)
1 , . . . , f

(n)
N which vanish at P . Clearly, any finite linear combination of such

polynomials must vanish at P whence P ∈ V (
∏

n In).
Conversely, suppose that P ∈ V (

∏
n In). Clearly, In ⊆

∏
n In. It then follows by Part 2

that V (
∏

n In) ⊆ V (In) for all n. Hence V (
∏

n In) ⊆
⋂
n V (In).

Proposition 9.4. Let K be a field. Then defining the V (I) to be closed sets of An
K defines

a topology τZ on An
K called the Zariski Topology.

Proof. In order to show that the Zariski Topology is indeed a Topology, we need to prove

1. An
K ,∅ ∈ τZ

2. Any intersection of elements of τZ is again an element of τZ

3. Finite unions of elements of τZ is again an element of τZ

By 9.3 we know that V ({ 0 }) = An
K and thus An

K ∈ τZ . Furthermore, the empty set is
vacuously an affine variety so also ∅ ∈ τZ .

Now let {Vn }n∈N be a collection of elements of τZ . We have
⋂
n Vn = V (

∏
n In) and so⋂

n Vn ∈ τZ .
Finally, let V (I1), . . . , V (In) ∈ τZ . Then V (I1) ∪ · · · ∪ V (In) = V (I1 ∪ · · · ∪ In) and so

V (I1) ∪ · · · ∪ V (In) ∈ τZ .

Proposition 9.5. Let K be a field. Then any polynomial mapping on AK is continuous
with respect to the Zariski Topology.

Proof. Recall that a mapping is continuous with respect to some topology if and only if the
preimage of any closed set is closed. Let f ∈ K[X1, . . . , Xn] be a polynomial. Let X ∈ τZ
be a closed set. We need to show that the preimage of f(X) is in τZ . Recall that the
closed sets of τZ are exactly the affine varieties. Hence X is defined by some polynomials
h1, . . . , hN ∈ K[X1, . . . , Xn]. Now, x ∈ f−1(X) if and only if f(x) ∈ X if and only if
hi(f(x)) = 0 for all 1 ≤ i ≤ N . This then means that f−1(X) is defined by the equations
h1 ◦ f, . . . , hN ◦ f which means that f−1(X) is an affine variety and is thus in τZ . Hence f
is a continuous mapping with respect to the Zariski Topology.

Definition 9.6. Let K be a field and V ⊆ AK an affine variety. We define the vanishing
ideal of V to be

I(V ) = { f ∈ K[X1, . . . , Xn] | f(a1, . . . , an) = 0 ∀ (a1, . . . , an) ∈ V }

Proposition 9.7. Let K be a field and V ⊆ An
K a variety. Then I(V ) is a radical ideal.

Proof. Suppose that f ∈
√
V (I). Then fn ∈ V (I) for some n ∈ N. Hence there exists a

point P ∈ V at which fn vanishes. But then so f also vanishes at P and thus f ∈ V (I) as
required.

Proposition 9.8. Let K be a field and V ⊆ An
K an affine variety. Then
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1. V (I(V )) = V

2. I(V (I)) ⊆ I

3. If I is non-radical then I(V (I)) ( I

Proof.

Part 1: Suppose that f ∈ I(V ). Then by definition, f vanishes on V so V ⊆ V (I(V )).
Conversely, suppose P 6∈ V . Then, since V is given by some f1, . . . , fn ∈ K[X1, . . . , Xn],

there must exist an fi such that fi(P ) 6= 0. But fi ∈ I(V ) so we must have that P /∈ V (I(V )).

Part 2: Suppose that f ∈ I(V (I)). Then, by definition, there exists a P ∈ V (I) such that
f(P ) = 0. It then follows that f ∈ I.

Part 3: By Part 2 we have that I(V (I)) ⊆ I. By Proposition 9.7 we know that I(V (I)) is
radical. Hence if I is not radical, we cannot have that I(V (I)) = I so we must have that
I(V (I)) ( I.

Theorem 9.9 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field and I /
K[X1, . . . , Xn] an ideal. Then I(V (I)) =

√
I.

This theorem has the following meaning. If K is an algebraically closed field and
F1, . . . , Fm, G ∈ K[X1, . . . , Xn] are such that G vanishes whenever all the Fi vanish then
there exists an N > 0 such that

GN = A1F1 + · · ·+ AmFm

for some Ai ∈ K[X1, . . . , Xn].

Corollary 9.10. Let K be algebraically closed and I / K[X1, . . . , Xn] an ideal. Then V (I)
is empty if and only if there exist f1, . . . , fk ∈ I and g1, . . . , gk ∈ K[X1, . . . , Xn] such that

k∑
i=1

figi = 1

Proof. If we are able to write 1 as a linear combination of the fi then, clearly, the fi cannot
vanish simultaneously and so V (I) = ∅.

Conversely, suppose that V (I) = ∅. We need to show that 1 ∈ I. By the Nullstellensatz
we have that

√
I = I(V (I)) = I(∅) = K[X1, . . . , Xn]. Hence 1n ∈ I for some n > 0 whence

1 ∈ I.

Corollary 9.11. Let K be an algebraically closed field. Then every maximal ideal of
K[X1, . . . , Xn] is of the form

ma = (X1 − a1, . . . , Xn − an)

for some ai ∈ K.

Proof. It is clear that K[X1, . . . , Xn]/ma = K and thus ma is a maximal ideal.
Conversely, suppose that I / K is a maximal ideal. Then 1 /∈ I. Appealing to Corollary

9.10 we see that V (I) contains at least one point a = (a1, . . . , an) ∈ An
K . hence we must

have that I ⊆ ma. But I is maximal so I = ma.
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Corollary 9.12. Let K be an algebraically closed field and f, g ∈ K[X1, . . . , Xn]. If f is
irreducible and g vanishes on the hypersurface f(X0, . . . , Xn) = 0 then f divides g.

Proof. We have that I(V (f)) =
√

(f). Since g vanishes on f = 0 we have that g ∈
√

(f).
Then gn ∈ (f) for some n > 0. But K[X1, . . . , Xn] is a UFD so g ∈ (f).

Definition 9.13. Let K be a field and V ⊆ An
K an affine variety. We say that V is

irreducible if it cannot be expressed as V = V1 ∪ V2 where Vi ( are proper affine V -
subvarieties.

Proposition 9.14. Let K be a field and V ⊆ An
K a variety. Then V is irreducible if I(V )

is prime.

Proof. Suppose that I(V ) is not prime. We can then find f1, f2 /∈ I(V ) such that f1f2 ∈
I(V ). Then for all P ∈ V we have f1(P )f2(P ) = 0. But K[X1, . . . , Xn] is an integral
domain so either f1(P ) = 0 or f2(P ) = 0. This implies that either P ∈ V (F1) or P ∈ V (F2).
Furthermore, fi /∈ V means that V (fi) 6= V so we have a decomposition

V = (V ∩ V (f1)) ∪ (V ∩ V (f2))

and thus V is reducible.
Conversely, suppose that I(V ) is prime and assume, for a contradiction, that V = V1∪V2

for some proper affine V -subvarieties V1, V2. Let Ii = I(Vi). Then V (Ii) = Vi and thus
V (I(V )) = V = V1 ∪ V2 = V (I1) ∪ V (I2) = V (I1 ∩ I2). Now, V (I), I1 and I2 are all radical
so by the Nullstellensatz, we must have that I(V ) = I1 ∩ I2. Furthermore, I(V ) ( I1, I2
so there exists f1 ∈ I1\I(V ) and f2 ∈ I2\I(V ). Then f1f2 ∈ I1 ∩ I2 = I(V ) which is a
contradiction to the fact that I(V ) is prime.

Definition 9.15. Let K be a field and V ⊆ An
K an affine variety. We define the coordinate

ring of V to be

K[V ] = K[X1, . . . , Xn]/I(V )

Proposition 9.16. Let K be an algebraically closed field and V ⊆ An
K an affine variety.

Then there is a one-to-one correspondence between the elements of V and the maximal ideals
of K[V ].

Proof. Recall that there is a one-to-one correspondence between the ideals ofK[X1, . . . , Xn]/I(V )
and the ideals of K[X1, . . . , Xn] containing I(V ). This in turn implies that there is a one-
to-one correspondence between the maximal ideals of K[X1, . . . , Xn]/I(V ) and the max-
imal ideals of K[X1, . . . , Xn] containing I(V ). By Corollary 9.11 every maximal ideal of
K[X1, . . . , Xn] is of the form ma = (X − a1, . . . , X − an) for some a = (a1, . . . , an) ∈ An

K .
But ma contains I(V ) if and only if a ∈ V . Putting these facts together gives us the
one-to-one correspondence between points of V and maximal ideals of K[V ].

10 Hilbert Functions and Hilbert Polynomials

Definition 10.1. Let R be a ring. We say that R is graded if there exist a collection of
abelian groups {Ri } such that

R =
⊕
i

Ri

and the following properties hold:
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1. RiRj ⊆ Ri+j

2. Any r ∈ R can be expressed as a finite sum of elements in some of the Ri

Any element r ∈ Ri is said to be a homogeneous element. A homogeneous ideal is
one generated by a homogeneous element of a graded ring.

Example 10.2. Let K be a field. Then K[X1, . . . , Xn] is a graded ring. Indeed

K[X1, . . . , Xn] =
⊕
i

Ri

where Ri is the vector space of homogeneous polynomials of degree i.

Definition 10.3. Let R be a graded ring such that R0 is a field K, R is generated by
R0 ⊕ R1 and R1 is finite-dimensional over K. Then we shall refer to R as an admissible
graded ring.

Definition 10.4. Let R be an admissible graded ring. We define the Hilbert function of R
to be

hR(d) = dimR0(Rd)

Example 10.5. Consider R = K[X0, X1, . . . , Xn]. Then R is admissible and

hR(d) =

(
n+ d

d

)
=

(d+ 1) . . . (d+ n)

n!

Definition 10.6. Let K be a field and X ⊆ PnK a projective variety. We define the homo-
geneous vanishing ideal of X to be

I(X) = { f ∈ K[X0, . . . , Xn] | f(a0, . . . , an) = 0 ∀ [a0 : . . . : an] ∈ PnK }

We define the homogeneous coordinate ring of X to be

S(X) = K[X0, . . . , Xn]/I(X)

Proposition 10.7. Let K be a field and X ⊆ P)Kn a projective variety. Then the homo-
geneous ideal and homogeneous coordinate ring of X admissible graded rings.

Proof. The homogeneous components of I(X), say I(X)d are exactly the homogeneous
polynomials of degree d that vanish on X.

Let Kn be the space of all homogeneous polynomials of degree d. Then the homogeneous
components of S(X) are Kd/I(X)d.

Definition 10.8. Let K be a field and X ⊆ PnK a projective variety. Let I = I(X) be the
homogeneous ideal of X. We define the Hilbert function of X, denoted hX(d) to be the
Hilbert function of its homogeneous coordinate ring. More generally, if I is a homogeneous
ideal then we define its Hilbert function to be the Hilbert function of K[X0, . . . , Xn]/I.

Example 10.9. Let K be a field and consider X = PnK as a variety over itself. Then
I(X) = ∅. Indeed, there does not exist finitely many polynomials that simultaneously
vanish at all points of PnK . Then S(X) = K[X0, X1, . . . , Xn]/∅ = K[X0, X1, . . . , Xn].
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Example 10.10. Let K be a field and p1, p2, p3 ∈ P2
K distinct points. Let I = I(X). We

are interested in determining hI(d). First suppose that d = 1. If Kn is the nth homogeneous
component of K[X0, X1, X2] we have that

hI(1) = dimK(K1/I1) = dimK(K1)− dimK(I1) = 3− dim)K(I1)

Now I1 is the space of homogeneous polynomials of degree 1 that vanish at p1, p2, p3. This
space is non-trivial, and has dimension 1, if and only if p1, p2, p3 are colinear. Hence we have
that

hI(1) =

{
2 if p1, p2, p3 are colinear
3 if otherwise

Now suppose that d = 2. We claim that hI(2) = 3 regardless of whether the points are
colinear or not. Fix representatives v1, v2, v3 ∈ A3

K\ { 0 }. We define a mapping

ϕ : K2 → A3
K

where we evaluate a polynomial in K2 at each of the points v1, v2, v3. Now, we can multiply
a linear homogeneous polymnomial vanishing at p1 but not p3 by a linear homogeneous
polynomial vanishing at p2 but not p3 to get a homogeneous quadratic polynomial vanishing
at p1 and p2 but not p3. We can repeat this process to find homogeneous quadratic poly-
nomials that vanish at any 2 of the 3 points. Hence the image of ϕ contains the standard
basis vectors whence the image of ϕ is all of A3

K . We then have that

hI(2) = dimK(K2/I2) = dimK(K2)− dimK(I2) = dimK(K2)− dimK(ker(ϕ))

= dimK(im(ϕ)) = 3

The same proof shows that hI(d) = 3 for all d ≥ 3. We have those completely determined
the Hilbert function for this projective variety.

Theorem 10.11. Let K be a field and X ⊆ PnK a projective variety (I a homogeneous
ideal). Then for large enough d, hX(d) (hI(d)) is a polynomial.

Definition 10.12. LetK be a field andX ⊆ PnK a projective variety. The unique polynomial
pX(d) = hX(d) is called the Hilbert polynomial of X. If pX(d) = akd

k + · · ·+ a0 then the
dimension of dimX is k. Furthermore, the degree of X is defined to be degX = k!ak.

Proposition 10.13. Let K be an algebraically closed field and F ∈ K[X0, X1, . . . , Xn] an
irreducible homogeneous polynomial of degree d. Let XF ⊆ PnK be the hypersurface given by
F = 0. Then the Hilbert polynomial of XF is

pXF
(m) =

(
m+ n

n

)
−
(
m+ n− d

n

)
Proof. The first term in the formula is the K-dimension of the space of homogeneous poly-
nomials of degree m. It thus suffices to prove that the second term is the K-dimension of
I(XF )m.

I(XF )m consists of all homogeneous polynomials of degree m that vanish at the hyper-
surface F = 0. By the Nullstellensatz we have

I(XF ) =
√

(F )
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Now, F is irreducible so
√

(F ) = (F ). Indeed, if Gk ∈ (F ) then Gk = HF for some
H ∈ K[X0, X1, . . . , Xn]. Since K[X0, X1, . . . , Xn] is a unique factorisation domain, we must
have that G = H ′F for some for some H ′ ∈ K[X0, X1, . . . , Xn]. Letting Kn be the nth

homogeneous component of K[X1, . . . , Xn], we see that I(XF )m = FKm−d and we are
done.

Remark. Note that the above proof relies on the fact that
√

(F ) = (F ). This in fact holds
for any F of the form F = F1 · · ·Fn where each Fi is irreducible and pair-wise distinct.

Example 10.14. Let K be a field and X ⊆ P2
K be the hypersurface given by a curve. Then

hX(m) =

(
m+ 2

2

)
−
(
m+ 2− d

2

)
= dm− d(d− 3)

2

11 Bézout’s Theorem in Higher Dimensions

Lemma 11.1. Let K be a field and U, V,W vector spaces over K. If

0 U V W 0
f g

is an exact sequence for some linear maps f : U → V and g : V → U then dimK(V ) =
dimK(U) + dimK(W ).

Proof. We have

dimK(V ) = dimK(ker(g)) + dimK(im(g)) = dimK(im(f)) + dimK(im(g))

= dimK(U) + dimK(W )

Proposition 11.2. Let K be a field and I, J /K[X0, X1, . . . , Xn] homogeneous ideals. Then
hI∩J + hI+J = hI + hJ .

Proof. We have the following exact sequence

0 R/(I ∩ J) R/I ×R/J R/(I + J) 0

with the second map sending f to (f, f) and the third map sending (f, g) to f − g. Passing
to the dth homogeneous component in this sequence and applying Lemma 11.1 yields the
formula.

Proposition 11.3. Let K be a field and I / K[X0, X1, . . . , Xn] a homogeneous ideal. Let
f ∈ K[X0, X1, . . . , Xn] be a homogeneous polynomial of degree e. Assume there exists a
d0 ∈ N such that for all g ∈ K[X0, X1, . . . , Xn] of degree at least d0 with fg ∈ I we have
g ∈ I. Then hI+(f)(d) = hI(d)− hI(d− e) for almost all d ∈ N.

Proof. Denote R = K[X0, X1, . . . , Xn]. Then for all d such that d − e ≥ d0 we have the
following exact sequence

0 Rd−e/Id−e Rd/Id Rd/(I + (f))d 0

with the first map given by multiplication by f and the second map given by the quotient
map. The injectivity of the second map is guaranteed by the hypothesis of the theorem.
The surjectivity of the third map is guaranteed by it being a quotient map. Appealing to
Lemma 11.1 yields the formula.
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Remark. Let K be a field and X ⊆ PnK a projective variety. Let I = I(X) be the corre-
sponding homogeneous ideal. Consider the irreducible decomposition X = X1 ∪ · · · ∪Xr so
that I(X) = I(X1) ∩ . . . I(Xn). Suppose that F ∈ K[X0, . . . , Xn] does not vanish on any
Xi. We shall show that the assumption of the previous proposition holds.

If f does not vanish on any of the Xi then f is non-zero in S(Xi) for all i. If gf ∈ I then
gf ∈ I(Xi) for all i. So gf ∈ S(Xi). But S(Xi) is an integral domain and f is non-zero so
g = 0. This means that g ∈ I(Xi) and thus g ∈ I.

Theorem 11.4. Let K be a field and X ⊆ PnK a projective variety of dimension at least
1. Let f ∈ K[X0, X1, . . . , Xn] be a homogeneous polynomial that does not vanish on any
irreducible component of X. Then

deg(I(X) + (f)) = deg(X) deg(f)

Proof. Let m = dim(X). By definition, the Hilbert polynomial of X is

pX(d) =
degX

m!
dm + am−1d

m−1 + · · ·+ a0

for some ai ∈ Q. Let e = deg(f). By the previous remark we can apply the lemma to see
that

pI(X)+f (d) = pX(d)− pX(d− e)

=
deg(X)

m!
(dm − (d− e)m) + am− 1(dm−1 − (d− e)m−1) + . . .

=
e deg(X)

(m− 1)!
dm−1 + . . .

Hence deg(I(X) + (f)) = deg(X)e = deg(X) deg(f).

Theorem 11.5. Let K be a field and X1, . . . , Xk ⊆ PnK projective varieties of dimensions
n1, . . . , nk and degrees d1, . . . , dk respectively. Suppose that

∑
i n− ni and X1 ∩ · · · ∩Xk has

finite cardinality. Then this number is at most d1 · · · dk.
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