Algebraic Geometry Notes

Alexandre Daoud

May 2, 2016

1 Bézout's Theorem

Definition 1.1. Let K be a field. We define \mathbf{n}-dimensional affine space over K to be

$$
\mathbb{A}_{K}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in K\right\}
$$

Definition 1.2. Let K be a field. A subset $V \subseteq \mathbb{A}_{n}^{K}$ is called an affine variety if there exist polynomials $f_{1}, \ldots, f_{m} \in K\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
V=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}_{K}^{n} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=0 \forall 1 \leq i \leq m\right\}
$$

Let K be a field. Recall that a polynomial $f \in K\left[X_{1}, \ldots, X_{n}\right]$ is called irreducible if there does not exist two polynomial $g, h \in K\left[X_{1}, \ldots, X_{n}\right]$ of degree greater than or equal to one such that $f=g h$. Furthermore, since K is a field, $K\left[X_{1}, \ldots, X_{n}\right]$ is a principal ideal domain and, in particular, a unique factorisation domain.

Definition 1.3. Let K be a field and $f(X)=\sum_{i=0}^{n} a_{i} X^{i}, g(X)=\sum_{i=0}^{m} b_{i} X^{i} \in K[X]$ be polynomials such that $a_{n} b_{n} \neq 0$. We define the resultant of $f(X)$ and $g(X)$ to be

$$
R[f, g]=a_{n}^{m} b_{m}^{n} \prod_{i, j}\left(\alpha_{i}-\beta_{j}\right)
$$

where the α_{i} and β_{j} are the roots of f and g respectively.
It is clear from the definition of the resultant that two polynomials f and g have a common root if and only if their resultant vanishes.

Proposition 1.4. Let K be a field and $f=\sum_{i=0}^{n} a_{i} X^{i}, g=\sum_{i=0}^{n} b_{i} X^{i} \in K[X]$ be polynomials. Then $R[f, g]$ is equal to the determinant of the Sylvester matrix

$$
\left(\begin{array}{ccccccccc}
a_{n} & a_{n-1} & \cdots & a_{1} & a_{0} & 0 & \cdots & 0 & 0 \\
0 & a_{n} & a_{n-1} & \cdots & a_{1} & a_{0} & 0 & \cdots & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & a_{n} & a_{n-1} & \cdots & a_{1} & a_{0} \\
b_{m} & b_{m-1} & \cdots & b_{1} & b_{0} & 0 & \cdots & 0 & 0 \\
0 & b_{m} & b_{m-1} & \cdots & b_{1} & b_{0} & 0 & \cdots & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & b_{m} & b_{m-1} & \cdots & b_{1} & b_{0}
\end{array}\right)
$$

Proof. The resultant vanishes if and only if f and g have a common root. This means their greatest common divisor is non-trivial. Hence there exists polynomials $r(X)$ and $s(X)$ of degree at most $m-1$ and $n-1$ respectively such that $f(X) r(X)+s(X) g(X)=0$. We may consider the $m+n$ coefficients of $r(X)$ and $s(X)$ as unknowns which gives us a system of $m+n$ homogeneous equations in $m+n$ unknowns. This system of equations has a nontrivial solution if and only if the determinant of the Sylvester matrix vanishes. Now the determinant and $R[f, g]$ are homogeneous expressions of degree m in the a_{i} and degree n in the b_{i} so they must be equal up to a constant. To see that the constant is in fact 1 , we need only consider the coefficient of the term $a_{n}^{m} b_{0}^{n}$.

Proposition 1.5. Let K be a field and $f, g \in K[X, Y]$ be polynomials of degree n and m respectively. If the number of solutions to $f(X, Y)=g(X, Y)=0$ is finite then it is at most $n m$.

Proof. This is tautologically true if $|K|<\infty$. Hence suppose that K is an infinite field. Since the number of solutions to $f(X, Y)=g(X, Y)=0$ is finite, there exists a line through the origin, say l, such that any line parallel to l contains only one solution of the equation. We may thus perform a linear change of coordinates so that every solution to $f(X, Y)=$ $g(X, Y)=0$ has a different X-coordinate. Now consider f and g as elements of $K[X][Y]$. In other words, f and g are polynomials in Y over $K[X]$. Writing this explicitly we have

$$
f(X, Y)=\sum_{i=0}^{n} f_{i}(X) Y^{i}, \quad g(X, Y)=\sum_{j=0}^{m} g_{j}(X) Y^{j}
$$

where $\operatorname{deg}\left(f_{i}\right) \leq n-i$ and $\operatorname{deg}\left(g_{j}\right) \leq m-j$. Now, $R[f, g] \in K[X]$. By definition, $R[f, g]$ has a root at $X=c$ if and only if $f(c, Y)$ and $g(c, Y)$ have a common root. Hence the number of solutions of the equation $f(X, Y)=g(X, Y)=0$ is at most the number of roots of $R[f, g]$. We claim that $R[f, g]$ has degree at most $m n$ whence the theorem will follow. Indeed, for simplicity we may assume that $\operatorname{deg}\left(f_{i}\right)=n-i$ and $\operatorname{deg}\left(g_{i}\right)=m-i$. Then the diagonal of the Sylvester matrix contributes a polynomial of degree $m n$ to the determinant. All other terms of the determinant are given by polynomials of degree at most $m n$. The proposition is thsu proven.

Proposition 1.6. Let K be a field. Suppose that $f \in K[X, Y]$ is irreducible and $g \in K[X, Y]$ is an arbitrary polynomial. If f does not divide g then $f(X, Y)=g(X, Y)=0$ has a finite number of solutions.

Proof. Suppose that X appears with at least degree 1 in f. We claim that $f(X, Y)$ is irreducible in $K(Y)[X]$. Suppose that $f=\overline{h_{1} h_{2}}$ where $\overline{h_{1} h_{2}} \in K(Y)[X]$. Let $a_{1}(Y), a_{2}(Y) \in$ $K[Y]$ be the denominators of $\overline{h_{1}}, \overline{h_{2}}$. Let h_{i} represent the $\overline{h_{i}}$ multiplied by the a_{i}. Then $h_{1}, h_{2} i n K[X, Y]$ and we have

$$
a_{1} a_{2} f=h_{1} h_{2}
$$

Since f is irreducible and $K[X, Y]$ is a UFD, we must have that $f \mid h_{1}$ or $f \mid h_{2}$. But h_{1} and h_{2} both have degree of X less than f which is a contradiction. Hence f must be irreducible in $K(Y)[X]$. By similar argumentation, we see that g is not divisible by f in $K(Y)[X]$. Hence f and g have no common factors in $K(Y)[X]$. Hence there must exist two polynomials $\bar{u}, \bar{v} \in K(Y)[X]$ such that

$$
f \bar{u}+g \bar{v}=1
$$

Let $a \in K[Y]$ be the least common multiple of all the denominators of the coefficients of \bar{u} and \bar{v}. Denote $u=a \bar{u}$ and $v=a \bar{v}$. We then have that

$$
f u+g v=a
$$

Hence the Y-coordinates of all solutions of $f(X, Y)=g(X, Y)=0$ must all be roots of $a \in K[Y]$. Since $f(X, Y)$ can have only finitely many solutions on any line $Y=c$, it must then have finitely many solutions (X, Y).

Theorem 1.7 (Bézout's Theorem). Let K be a field and $f, g \in K[X, Y]$ be polynomials with no common factors. Then the number of solutions to $f(X, Y)=g(X, Y)=0$ is at most $\operatorname{deg}(f) \operatorname{deg}(g)$.

Proof. Since $K[X, Y]$ is a UFD, we can write $f=f_{1}, \ldots, f_{n}$ for some irreducible polynomials $f_{i} \in K[X, Y]$. We may apply Proposition 1.6 to see that $f_{i}(X, Y)=g(X, Y)=0$ has only finitely many solutions for all $1 \leq i \leq n$. Appealing to Proposition 1.5, we see that $f_{i}(X, Y)=g(X, Y)=0$ has at $\operatorname{most} \operatorname{deg}\left(f_{i}\right) \operatorname{deg}(g)$ solutions whence $f(X, Y)=g(X, Y)=0$ has at most $\operatorname{deg}(f) \operatorname{deg}(g)$ solutions.

Definition 1.8. Let K be a field and $f(X, Y) \in K[X, Y]$ a polynomial. We call the set of solutions to $f(X, Y)=0$ a curve. The degree of a curve is the degree of the polynomial defining it. If $\operatorname{deg}(f)=2$ then $f(X, Y)=0$ is a conic. If $\operatorname{deg}(f)=3$ then $f(X, Y)=0$ is a cubic.

Theorem 1.9 (Pascal's Theorem). Let K be a field and $f(X, Y)=0$ a conic over K. If A_{1}, \ldots, A_{6}. Let $A_{i} A_{j}$ denote the unique line passing through the points A_{i} and A_{j}. Then, up to renumbering, three points $A_{1} A_{2} \cap A_{4} A_{5}, A_{2} A_{3} \cap A_{5} A_{6}$ and $A_{3} A_{4} \cap A_{6} A_{1}$ all lie on one line.

Proof. Let $L_{1}, M_{1}, L_{2}, M_{2}, L_{3}, M_{3}$ be linear functions that vanish on the lines $A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{4}, A_{4} A_{5}, A_{5} A_{6}, A_{6} A_{1}$ respectively. Consider the following family of polynomials indexed by λ :

$$
G_{\lambda}=L_{1} L_{2} L_{3}+\lambda M_{1} M_{2} M_{3}
$$

then $G_{\lambda}=0$ is a cubic that contains the points A_{1}, \ldots, A_{6} and the three points listed in the theorem. Fix a point p on the conic $f=0$ distinct from the A_{i} and let λ_{0} be such that $G_{\lambda_{0}}=p$. Then $G_{\lambda_{0}}=0$ and $f=0$ have 7 points in common, namely p, A_{1}, \ldots, A_{6}. By Bézout's Theorem $G_{\lambda_{0}}=0$ and $f=0$ have a non-trivial greatest common divisor. We claim, in fact, that f divides $G_{\lambda_{0}}$. If f is irreducible then this is clear. If not then $f=0$ is the union of two lines in the plane. We may choose p so that exactly one of p, A_{1}, \ldots, A_{6} lie on the intersection of these two lines ${ }^{17}$ hence f decomposes into two linear functions, both of which vanish at one of the points p, A_{1}, \ldots, A_{6}. Since $G_{\lambda_{0}}$ also vanishes at all these points, it must be divisible by both the factors of f and is thus divisible by f itself. But f is a conic so there exists a line L such that $G_{\lambda_{0}}=F L=0$. Clearly, the three points cannot lie on F so they must lie on L and we are done.

[^0]
2 Kakeya Conjectures

Definition 2.1. Let K be a finite field and $E \subseteq K^{n}$. We say that E is a Kakeya subset of K^{n} if E contains a unit line in every direction.

Lemma 2.2. Let R be a ring. Then the vector space of polynomials in $R\left[X_{1}, \ldots, X_{n}\right]$ of degree at most d has dimension $\binom{n+d}{d}$.

Proof. We prove the lemma by using the standard stars and bars argumentation of combinatorics. Clearly, the basis of such a vector space is given by all monomials in $R\left[X_{1}, \ldots, X_{n}\right]$ of degree at most d. If we homogenise these monomials using a dummy variable X_{0} then, obviously, we will still have the same number of monomials. Hence it suffices to count the number of monomials in $R\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ whose degree is d. If $X_{0}^{a_{0}} X_{1}^{a_{1}} \ldots X_{n}^{a_{n}}$ is such a monomial then we have the equation

$$
a_{0}+a_{1}+\cdots+a_{n}=d
$$

We seek to count the number of solutions to this equation for non-negative $a_{i} \in \mathbb{Z}$. To do this, we notice that this is the same as taking $n+d$ places and filling them with d 'stars' and n 'bars'. For example, if $d=3$ and $n=2$ then

$$
\{* *|*|\}
$$

corresponds to the solution $2+1+0=3$. But this is the same as taking $n+d$ arbitrary elements and counting the number of distinct configurations there exists with n of the elements fixed. This is equal to $\binom{n+d}{n}$ which is in turn equal to $\binom{n+d}{d}$ and we are done.

Proposition 2.3. Let K be a field and $L \subseteq K\left[X_{1}, \ldots, X_{n}\right]$ be a linear subspace. Let $E \subseteq K^{n}$ be such that $|E|<\operatorname{dim}(L)$. Then there exists a non-zero polynomial in L that vanishes on E. Furthermore, if M is the subspace of polynomials in L that vanish on E then $\operatorname{dim}(M) \geq \operatorname{dim}(L)-|E|$.

Proof. Let K^{E} denote the K-vector space of K-valued functions on E. Define the mapping

$$
e: L \mapsto K^{E}
$$

which sends a polynomial in $f\left(X_{1}, \ldots, X_{n}\right) \in L$ to the function $f\left(x_{1}, \ldots, x_{n}\right) \in K^{E}$. The kernel of this mapping is clearly M. By the rank-nullity theorem, we have $\operatorname{dim}(L)=$ $\operatorname{dim}(M)+\operatorname{dim}(\operatorname{im}(e))$. The proposition then follows upon realising $|E| \geq \operatorname{dim}(\operatorname{im}(e))$.
Corollary 2.4. Let K be a finite field and $E \subseteq K^{n}$ subset such that $|E|<\binom{n+d}{d}$ for some non-negative integer d. Then there exists a non-zero polynomial $f \in K\left[X_{1}, \ldots, X_{n}\right]$ that vanishes on E such that $\operatorname{deg}(f) \leq d$.

Proof. Let V_{d} be the vector space of polynomials in $K\left[X_{1}, \ldots, X_{n}\right]$ of degree at most d. By Lemma 2.2, the dimension of V_{d} is $\binom{n+d}{d}$. The corollary then follows upon application of 2.3 .

Lemma 2.5. Let K be a finite field and $f \in K\left[X_{1}, \ldots, X_{n}\right]$ a polynomial of degree less than $|K|$. If f vanishes on all of K^{n} then f is identically zero.

Proof. We prove the lemma by induction on the number of indeterminates n. If $n=1$ then the lemma is true since any polynomial of degree less than $|K|$ that vanishes on all of K must be identically zero. Suppose the lemma is true for arbitrary $n-1$. We may write f in the form

$$
f=\sum_{i=0}^{|K|-1} X_{n}^{|K|-i-1} f_{i}\left(X_{1}, \ldots, X_{n-1}\right)
$$

where f_{i} is a polynomial of degree at most i. Fix some $\left(x_{1}^{0}, \ldots, x_{n-1}^{0}\right) \in K^{n-1}$. Then $f\left(x_{1}^{0}, \ldots, x_{n-1}^{0}, X_{n}\right)$ is a polynomial in one variable X_{n} of degree less than $|K|$. This polynomial must be identically zero which means that $f_{i}\left(x_{1}^{0}, \ldots, x_{n-1}^{0}\right)=0$ for all i. By the induction hypothesis, f_{i} is identically zero for all i. Hence f is also identically zero.

Proposition 2.6. Let K be a finite field and $f \in K\left[X_{1}, \ldots, X_{n}\right]$ a polynomial of degree at most $|K|-1$ that vanishes on some Kakeya set $E \subseteq K^{n}$. Then f is identically zero.

Proof. Suppose that f is not identically zero. Then f has strictly positive degree. We may write f as a sum of its individual homogeneous components

$$
f=\sum_{i=0}^{d} f_{i}
$$

where $1 \leq d \leq|K|-1$. Let $v=\left(v_{1}, \ldots, v_{n}\right) \in K^{n} \backslash\{0\}$. Since E is a Kakeya set, there exists some $x_{v}=\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$ such that

$$
\left\{x_{v}+t v \mid t \in K\right\} \subseteq E
$$

By hypothesis, f vanishes on E so $f\left(x_{v}+t v\right)=0$ for all $t \in K$. This is a polynomial in t of degree $|K|-1$ which vanishes on all of K so it must be identically zero. We claim that the coefficient of t^{d} is equal to $f_{d}(v)$. Indeed

$$
f\left(x_{v}+t v\right)=\sum_{i=0}^{d-1} f_{i}\left(x_{v}+t v\right)+f_{d}\left(x_{v}+t v\right)=\sum_{i<d} c_{i} t^{i}+t^{d} f_{d}(v)
$$

for some $c_{i} \in K$. Hence for all $v \in K^{n} \backslash\{0\}, f_{d}(v)=0$. Furthermore, since f_{d} is homogeneous of degree $d>0$, it also vanishes at 0 . Hence $f_{d}(v)$ vanishes for all $v \in K^{n}$. By Lemma 2.5, $f_{d}(v)$ is thus identically zero which is a contradiction to the assumption that f is not identically zero.

Theorem 2.7 (Kakeya Conjecture - Dvir's Theorem). Let K be a finite field and $E \subseteq K^{n}$ a Kakeya set. Then there exists a $c_{n}>0$ such that $|E| \geq c_{n}\left|K^{n}\right|$.
Proof. We claim that E has cardinality at least $\binom{|K|+n-1}{|K|-1}$. Indeed, suppose that $|E|<$ $\binom{|K|+n-1}{|K|-1}$. Then Corollary 2.4 implies that there exists a non-zero polynomial of degree $|K|-1$ in $K\left[X_{1}, \ldots, X_{n}\right]$ that vanishes on E. But Proposition 2.6 implies that any such polynomial must be identically zero which is a contradiction. Hence the cardinality of E is at least $\binom{|K|+n-1}{|K|-1}$. Now,

$$
\binom{|K|+n-1}{|K|-1}=\frac{(|K|+n-1)!}{(|K|-1)!n!} \geq \frac{|K|^{n}}{n!}
$$

so $c_{n}=1 / n$! and we are done.

3 Projective Space

Definition 3.1. Let K be a field. Define an equivalence relation \sim on $\mathbb{A}_{K}^{n+1} \backslash\{0\}$ where $\left(a_{1}, \ldots, a_{n+1}\right) \sim\left(b_{1}, \ldots, b_{n+1}\right)$ if and only if there exists $\lambda \in K^{\times}$such that $a_{i}=\lambda b_{i}$ for all $1 \leq i \leq n+1$. We define \mathbf{n}-dimensional projective space, denoted \mathbb{P}_{K}^{n}, to be the set of all equivalence classes of this equivalence relation.

Lemma 3.2. Let K be a field. Then $\mathbb{P}_{K}^{n}=\mathbb{A}_{K}^{n} \cup \mathbb{P}_{K}^{n-1}$.
Proof. \mathbb{A}_{K}^{n} embeds in \mathbb{P}_{K}^{n} by the inclusion mapping $\left(a_{1}, \ldots, a_{n}\right) \mapsto\left[\left(1, a_{1}, \ldots, a_{n}\right)\right]$. The image of \mathbb{A}_{K}^{n} is clearly all of \mathbb{P}_{K}^{n} except for the equivalence classes of ordered pairs with zero x_{0} coordinates. We shall refer to such equivalence classes as the points at infinity of \mathbb{P}_{K}^{n}. It is easy to see that the set of all points at infinity of \mathbb{P}_{K}^{n} are 'isomorphic' to \mathbb{P}_{K}^{n-1}. Indeed, there is a bijection between the equivalence classes of $\left(0, x_{2}, \ldots, x_{n}\right)$ in \mathbb{P}_{K}^{n} and the equivalence classes of $\left(x_{2}, \ldots, x_{n}\right)$ in \mathbb{P}_{K}^{n-1}.

Corollary 3.3. $\mathbb{P}_{K}^{n}=\mathbb{A}_{K}^{n} \cup \cdots \cup \mathbb{A}_{K}^{0}$.
Definition 3.4. Let K be a field and $W^{m+1} \subseteq \mathbb{A}_{K}^{n+1}$ a linear subspace. Then the set of all lines through 0 in W^{m+1} is a linear subspace of \mathbb{P}^{m} called a projective hyperplane. In particular, if $m=1$ then such a subspace is a projective line.

Proposition 3.5. Let K be a field. Then the intersection of any two linear subspaces $\mathbb{P}_{K}^{l}, \mathbb{P}_{K}^{m} \subseteq \mathbb{P}_{K}^{n}$ is a linear subspace of dimension at least $l+m-n$.

Proof. $\mathbb{P}_{K}^{l}, \mathbb{P}_{K}^{m}$ and \mathbb{P}_{K}^{n} are all projective spaces arising from $\mathbb{A}_{K}^{l+1}, \mathbb{A}_{K}^{m+1}$ and \mathbb{A}_{K}^{n+1}. Now,

$$
\begin{aligned}
\operatorname{dim}\left(\mathbb{A}_{K}^{l+1} \cap \mathbb{A}_{K}^{m+1}\right) & =\operatorname{dim}\left(\mathbb{A}_{K}^{l+1}\right)+\operatorname{dim}\left(\mathbb{A}_{K}^{m+1}\right)-\operatorname{dim}\left(\mathbb{A}_{K}^{l+1}+\mathbb{A}_{K}^{m+1}\right) \\
& \geq l+1+m+1-(n+1)=l+m-n+1
\end{aligned}
$$

Hence projecting $\mathbb{A}_{K}^{l+1} \cap \mathbb{A}_{K}^{m+1}$ down we get a linear subspace of \mathbb{P}_{K}^{n} of dimension at least $l+m-n$.

From this proposition we see that any two hyperplanes in projective space intersect. In particular, looking back to Pascal's theorem, we may justify the assumption that all lines intersect, possibly at a so-called point at infinity.

Theorem 3.6 (Desargue's Theorem). Let K be a field and $a, b, c, A, B, C \in \mathbb{P}_{K}^{3}$ points not all contained in one plane. Furthermore, suppose that no three of the points all lie on one line. Suppose that the lines $a A, b B, c C$ all intersect at a point. Then the points ab $\cap A B$, $b c \cap B C, c a \cap C A$ all lie on one line.

Proof. By assumption there exists unique planes $a b c$ and $A B C$ that contain the points a, b, c and A, B, C respectively. We claim that the intersection of $a b c$ and $A B C$ contains the desired points. We have $a b \subseteq a b c$ and $A B \subseteq A B C$ so $a b \cap A B \subseteq a b c \cap A B C$. A similar argument shows that the other two points also line on such an intersection.

Proposition 3.7. Let K be a field and $\mathbb{P}^{k}, \mathbb{P}^{l}, \mathbb{P}^{m}$ be linear subspaces of \mathbb{P}_{K}^{n} such that $m+$ $l+k \geq n-1$. Then there exists a projective line that intersects all three of $\mathbb{P}^{k}, \mathbb{P}^{l}, \mathbb{P}^{m}$.

Proof. First suppose that $\mathbb{P}^{l} \cap \mathbb{P}^{m}=\varnothing$. Then there always exists a projective line joining a point of such an intersection to a point of \mathbb{P}^{k} and we are done. Hence assume their intersection is trivial.

Let \mathbb{P} be the minimal subspace of \mathbb{P}_{K}^{n} that contains both \mathbb{P}^{l} and \mathbb{P}^{m}. It is easy to see that such a subspace is the union of all projective lines connecting points of \mathbb{P}^{l} and \mathbb{P}^{m} and is of dimension of $l+m+1$. By hypothesis we have

$$
\begin{aligned}
\operatorname{dim}\left(\mathbb{P} \cap \mathbb{P}^{k}\right) & =\operatorname{dim}(\mathbb{P})+\operatorname{dim}\left(\mathbb{P}^{k}\right)-\operatorname{dim}\left(\mathbb{P}+\mathbb{P}^{k}\right) \\
& \geq l+m+1+k-n \geq 0
\end{aligned}
$$

and thus $\mathbb{P} \cap \mathbb{P}^{k} \neq \varnothing$ so there exists a projective line intersecting all three spaces.
Definition 3.8. Let K be a field and $p \in \mathbb{P}_{K}^{n}$ a point. Let $\left(\lambda a_{0}, \ldots, \lambda a_{n}\right)$ be a representative of p in \mathbb{A}_{K}^{n+1}. Then we say that $\left[a_{0}: \ldots: a_{n}\right]$ is a homogeneous coordinate of p.
Definition 3.9. Let K be a field and $f \in K\left[X_{0}, \ldots, X_{n}\right]$ a homogeoneous polynomial of degree d. We define the hypersurface defined by f to be the subset of \mathbb{P}_{K}^{n} given by

$$
X_{f}=\left\{\left[a_{0}: \ldots: a_{n}\right] \in \mathbb{P}_{K}^{n} \mid f\left(a_{0}, \ldots, a_{n}\right)=0\right\}
$$

We define the degree of X_{f} to be the degree of its defining polynomial.
Example 3.10. Let K be a field and $f \in K\left[X_{0}, \ldots, X_{n}\right]$ a homogeneous polynomial of degree 1. Then $X_{f}=\mathbb{P}^{n-1}$.

Definition 3.11. Let K be a field and $V \subseteq \mathbb{P}_{K}^{n}$ a subset. V is said to be a projective variety if there exist homogeneous polynomials $f_{1}, \ldots, f_{N} \in K\left[X_{0}, \ldots, X_{n}\right]$ such that

$$
V=\left\{\left[a_{0}: \ldots: a_{n}\right] \in \mathbb{P}_{K}^{n} \mid f_{i}\left(a_{0}, \ldots, a_{n}\right)=0 \forall 1 \leq i \leq n\right\}
$$

Definition 3.12. Let K be a field and $f \in K\left[X_{1}, \ldots, X_{n}\right]$ a polynomial of degree d. We define the homogeneous completion of f to be $X_{0}^{d} f\left(X_{1} / X_{0}, \ldots, X_{n} / X_{0}\right)$.

Recall that $\mathbb{P}_{K}^{n}=\mathbb{A}_{K}^{n} \cup \mathbb{P}_{K}^{n-1}$ and that we refer to \mathbb{P}_{K}^{n-1} as the points at infinity of \mathbb{A}_{K}.
Homogeneous equations over \mathbb{P}_{K}^{n} are related to inhomogeneous equations over \mathbb{A}_{K}^{n} in the following way. Replacing X_{0} with 1 in a homogeneous equation gives an inhomogeneous equation. Passing the the homogeneous completion of an inhomogeneous equation gives a homogeneous equation.

Example 3.13. Consider the two circles $X_{1}^{2}+X_{2}^{2}=1$ and $X_{1}^{2}+X_{2}^{2}=4$ in \mathbb{C}^{2}. It is easy to see that these two circles do not intersect in \mathbb{C}^{2}. We may pass to the homogeneous completion of these equations to get $X_{1}^{2}+X_{2}^{2}=X_{0}^{2}$ and $X_{1}^{2}+X_{2}^{2}=4 X_{0}^{2}$. It then follows that these two circles intersect at the points at infinity given by homogeneous coordinates $[0: 1: \pm i]$.

4 Quadratic Forms and Conics

Throughout this section, we assume all fields have characteristic different from 2.
Definition 4.1. Let K be a field. A quadratic form is a homogeneous polynomial of degree 2 in any number of indeterminates. A quadratic form $F\left(X_{1}, \ldots, X_{n}\right)$ is diagonal if $F=$ $\sum_{i=1} a_{i} X_{i}^{2}$ for some $a_{i} \in K$. Furthermore, a quadratic form is said to be diagonalisable if there exists a basis for K^{n} in which F is diagonal.

Proposition 4.2. Let K be an algebraically closed field and $F\left(X_{1}, \ldots, X_{n}\right)$ a non-zero quadratic form over K^{n}. Then there exists a K-basis of K^{n}, say v_{1}, \ldots, v_{n}, such that $F\left(v_{1} X_{1}+\cdots+v_{n} X_{n}\right)=\sum_{i=1}^{n} X_{1}^{2}+\cdots+X_{i}^{2}$ for some $1 \leq i \leq n$.

Proof. Consider the function

$$
Q(u, v)=\frac{F(u+v)-F(u)-F(v)}{2}
$$

We first claim that $Q(u, v)$ is a symmetric bilinear form on K^{n}.
Q is clearly symmetric by virtue of its definition. For simplicity, we shall check the calculation for bilinearity when F is in two indeterminates. We can always write F in the form

$$
F\left(X_{1}, X_{2}\right)=a X_{1} X_{2}+b X_{1}^{2}+c X_{2}^{2}
$$

and so

$$
\begin{aligned}
Q(u, v) & =\frac{(a+b+c)(u+v)^{2}-(a+b+c) u^{2}-(a+b+c) v^{2}}{2} \\
& =(a+b+c) u v
\end{aligned}
$$

which is clearly linear in both u and $v . Q(u, v)$ is also positive definite since it is a homogeneous polynomial of degree 2 .

We construct the basis by a Gram-Schmidt process. Choose a $v_{1} \in K$ such that $f\left(v_{1}\right)=$ 1. This can always be done since we may take v^{\prime} to be such that $F\left(v^{\prime}\right) \neq 0$ and then take $v_{1}=v^{\prime} / \sqrt{F\left(v_{1}\right)}$. We then have that $Q\left(v_{1}, v_{1}\right)=1$.

Now suppose that we have constructed linearly independent vectors $\left(v_{1}, \ldots, v_{k}\right)$ such that $Q\left(v_{i}, v_{j}\right)=\delta_{i j}$. Let V_{k} denote the subspace of K^{n} that is spanned by these vectors. We claim that $K^{n}=V_{k} \oplus V_{k}^{\perp}$ where

$$
V_{k}^{\perp}=\left\{v \in V \mid Q(v, u)=0 \forall u \in V_{k}\right\}
$$

Clearly, Q is non-degenerate on V_{k} so $V_{k} \cap V_{k}^{\perp}=\{0\}$. We just need to show that every element of K^{n} can be expressed as the sum of an element of V_{k} and an element of V_{k}^{\perp}. To this end, fix $x \in V$ and let

$$
y=x-\sum_{i=1}^{k} Q\left(x, v_{i}\right) v_{i}
$$

Then

$$
Q\left(y, v_{j}\right)=Q\left(x, v_{j}\right)-Q\left(x, v_{j}\right) Q\left(v_{j}, v_{j}\right)=0
$$

whence $y \in V_{k}^{\perp}$. Hence $x=y+\sum_{i=1}^{k} Q\left(x, v_{i}\right) v_{i} \in V_{k}^{\perp}+V_{k}$ and thus $K^{n}=V_{k} \oplus V_{k}^{\perp}$.
Now, if the restriction of Q to V_{k}^{\perp} is 0 then we can let v_{k+1}, \ldots, v_{n} be any basis for V_{k}^{\perp} and thus v_{1}, \ldots, v_{n} is a basis for V satisfying $Q\left(v_{i}, v_{j}\right)=\delta_{i j}$ for all $1 \leq i \leq j \leq k$ and $Q\left(v_{i}, v_{k}\right)$ for all $i>k$. If not then we can repeat this process until Q restricts to 0 on an orthogonal subspace.

Finally, we have that

$$
F\left(\sum_{i=1}^{n} v_{i} X_{i}\right)=Q\left(\sum_{i=1}^{n} v_{i} X_{i}, \sum_{i=1}^{n} v_{i} X_{i}\right)=X_{1}^{2}+\cdots+X_{k}^{2}
$$

Corollary 4.3. Let K be a field and C an irredicuble conic over \mathbb{P}_{K}^{2}. Then there exist homogeneous coordinates such that F is given by $X_{0} X_{2}-X_{1}^{2}=0$.

Proof. By Proposition 4.2, there exists coordinates such that the conic is given by one of

$$
Y_{0}^{2}=0, \quad Y_{0}^{2}+Y_{1}^{2}=0, \quad Y_{0}^{2}+Y_{1}^{2}+Y_{2}^{2}=0
$$

But the first two cases are the equations for reducible conics so we must be in the third case. The coordinates $X_{1}=i Y_{1}, X_{0}=Y_{0}-i Y_{2}$ and $X_{2}=Y_{0}+i Y_{2}$ bring the conic into the desired form.

Corollary 4.4. Let K be a field and C an irreducible conic over \mathbb{P}_{K}^{2}. Then C can be put into bijection with \mathbb{P}_{K}^{1}. Such a mapping is called a rational parametrisation of C.

Proof. By Corollary 4.3, we may assume that the conic takes the form

$$
\begin{equation*}
X_{0} X_{2}-X_{1}^{2}=0 \tag{1}
\end{equation*}
$$

We then have the map

$$
\begin{aligned}
\varphi: \mathbb{P}_{K}^{1} & \rightarrow C \\
{\left[u_{0}: u_{1}\right] } & \mapsto\left[u_{0}^{2}: u_{0} u_{1}: u_{1}^{2}\right]
\end{aligned}
$$

We claim that this map has inverse

$$
\begin{aligned}
\varphi^{-1}: C & \rightarrow \mathbb{P}_{K}^{1} \\
{\left[u_{0}: u_{1}: u_{2}\right] } & \mapsto\left[u_{0}: u_{1}\right] \text { or }\left[u_{1}: u_{2}\right]
\end{aligned}
$$

Note that the first of these two maps is not defined on $[0: 0: 1]$ and the second is not defined on $[1 ; 0 ; 0]$. They however coincide everywhere else by virtue of 1 . We now check their compositions. We have

$$
\varphi^{-1} \circ \varphi\left(\left[u_{0}: u_{1}\right]\right)=\varphi^{-1}\left(\left[u_{0}^{2}: u_{0} u_{1}: u_{1}^{2}\right]\right)=\left[u_{0}: u_{1}\right]
$$

A similar argument shows the reverse composition.
Proposition 4.5. Let K be a field and $A_{1}, \ldots, A_{5} \in \mathbb{P}_{K}^{2}$ points. Then

1. there exists a conic over \mathbb{P}_{K}^{2} that passes through them
2. there exists a unique conic through the A_{i} if and only if no 4 of the points lie on one line
3. the conic is irreducible if and only if no three of the points lie on one line

Proof. Let a_{1}, \ldots, a_{5} be points in \mathbb{A}_{K}^{3} on the lines through the origin corresponding to A_{1}, \ldots, A_{5}. Note that the set of all homogeneous polynomials of degree 2 , together with the 0 vector, is a linear subspace of $K\left[X_{0}, X_{1}, X_{2}\right]$. It is easy to see that this vector space has dimension 6 over K. Appealing to Proposition 2.3, we see that the linear subspace of $K\left[X_{0}, X_{1}, X_{2}\right]$ consisting of all homogeneous polynomials of degree 2 that vanish at the a_{i} has dimension over K at least 1 . Hence there exists at least one conic passing through the a_{i} and thus there exists at least one conic passing through the A_{i}.

Now suppose, without loss of generality, that A_{1}, \ldots, A_{4} all lie on one projective line $L=0$. If $L^{\prime}=0$ is any line containing A_{5} then $L L^{\prime}=0$ is a conic that contains A_{1}, \ldots, A_{5}. Hence there are more than one conics that pass through A_{1}, \ldots, A_{5} in this case.

Conversely, suppose that there does not exist a projective line passing through any four of A_{1}, \ldots, A_{5}. To prove the conic is unique, we shall consider the case where no three of A_{1}, \ldots, A_{5} lie on line separately.

First suppose that no three of A_{1}, \ldots, A_{5} lie on one line and that C_{1} and C_{2} are two conics, given by $F_{1}=0$ and $F_{2}=0$ respectively, containing A_{1}, \ldots, A_{5}. We first claim that given any point $p \in \mathbb{P}_{K}^{2}$, there exists a point $[s: t] \in \mathbb{P}_{K}^{1}$ such that $\left(s F_{1}+t F_{2}\right)(p)=0$. Indeed, if $F_{2}(p)=0$ then we may take $[s: t]=[0: 1]$. Else we can take $s=1$ and

$$
t=-\frac{F_{1}(p)}{F_{2}(p)}
$$

Now choose p on the line L_{1} joining A_{1} and A_{2} and let $F=s F_{1}+t F_{2}=0$ be the corresponding conic. The intersection of F with L_{1} contains the three points p, A_{1} and A_{2}. By Bézout's Theorem, F must be reducible and we have $F=L_{1} L$ for some line L. Since L_{1} cannot contain any of the A_{3}, A_{4}, A_{5}, they must be on L. But this contradicts the assumption that no three of the A_{i} lie on one line. Hence the conic must be unique.

Finally, let $F=0$ be a conic passing through the five A_{i}. If F were reducible then it would decompose into two lines $F=L_{1} L_{2}=0$. Clearly, one of the L_{i} must contain three of the points. Conversely, if three of the points lie on one line L then Bézout's Theorem implies that L divides F and thus F is reducible.

5 Cubic Curves

Proposition 5.1. Let K be an algebraically closed field of characteristic zero. Then any two curves over \mathbb{P}_{K}^{2} intersect.

Proof. Let C_{1} and C_{2} be two curves over \mathbb{P}_{K}^{2} given by the homogeneous polynomials $F, G \in$ $K\left[X_{0}, X_{1}, X_{2}\right]$. We need to exhibit a non-zero $\left(a_{0}, a_{1}, a_{2}\right) \in \mathbb{A}_{K}^{3}$ such that $F\left(a_{0}, a_{1}, a_{2}\right)=$ $G\left(a_{0}, a_{1}, a_{2}\right)=0$. In order to do this, we shall consider the resultant of these two polynomials. Without loss of generality, we may assume that $F(1,0,0)$ and $G(1,0,0)$ are non-zero. Furthermore, we may write (scaling if necessary)

$$
F\left(X_{0}, X_{1}, X_{2}\right)=\sum_{i=0}^{n} F_{i}\left(X_{1}, X_{2}\right) X_{0}^{i}, \quad G\left(X_{0}, X_{1}, X_{2}\right)=\sum_{i=0}^{m} G_{i}\left(X_{1}, X_{2}\right) X_{0}^{i}
$$

for some $F_{i}, G_{i} \in K\left[X_{1}, X_{2}\right]$. By definition, it is easy to see that the resultant of F and G with respect to X_{0} is a homogeneous polynomial in X_{1} and X_{2} of degree $n m$. Hence if we fix non-zero $a_{2} \in K$, we get a polynomial in X_{0}. Since K is algebraically closed, such a polynomial must have a root, say a_{0}. Then $R[F, G]\left(a_{1}, a_{2}\right)=0$ so the polynomials $F\left[X_{0}, a_{1}, a_{2}\right]$ and $G\left[X_{0}, a_{1}, a_{2}\right]$ must have a root in common. This means that there exists non-zero $\left(a_{0}, a_{1}, a_{2}\right)$ such that $F\left[a_{0}, a_{1}, a_{2}\right]=G\left[a_{0}, a_{1}, a_{2}\right]=0$ and we are done.

Definition 5.2. Let K be a field and $F \in K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ be a homogeneous polynomial. A point P of the hypersurface $F=0$ is said to be singular if

$$
\frac{\partial F}{\partial X_{i}}(P)=0
$$

for all $0 \leq i \leq n$. If some of the derivatives are non-zero then P is said to be smooth. If all the points of $F=0$ are smooth then the hypersurface itself is said to be smooth

Proposition 5.3. Let K be an algebraically closed field of characteristic 0 . Then any smooth curve over \mathbb{P}_{K}^{2} is irreducible.

Proof. Let C be a smooth curve over \mathbb{P}_{K}^{2} given by $F \in K\left[X_{0}, X_{1}, X_{2}\right]$. Suppose, for a contradiction, that C is reducible. Then F decomposes as $F=G H$ for some $G, H \in$ $K\left[X_{0}, X_{1}, X_{2}\right]$. By Proposition 5.1, G and H intersect at some point, say P. Now,

$$
\frac{\partial F}{\partial X_{0}}(P)=\left[\frac{\partial G}{\partial X_{0}} H+\frac{\partial H}{\partial X_{0}} G\right](P)=0
$$

and so $F=0$ is singular at P which is a contradiction to the smoothness of C. Hence C must be irreducible.

Definition 5.4. Let K be a field and L a projective line over \mathbb{P}_{K}^{n}. If $F=0$ is a hypersurface over \mathbb{P}_{K}^{n} then L is said to be tangent to $F=0$ if the restriction of F to L has a double root at some point p.

Definition 5.5. Let K be a field and $f \in K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ a polynomial. We define the Hessian of f to be

$$
\operatorname{Hess}_{f}=\operatorname{det}\left(\frac{\partial f}{\partial X_{i} \partial X_{j}}\right)_{0 \leq i \leq j \leq n}
$$

Theorem 5.6 (Weierstrass Normal Form). Let K be a field an algebraically closed field of characteristic 0 . Let C be a smooth cubic curve over \mathbb{P}_{K}^{2}. Then there exist homogeneous coordinates so that C is given by an equation of the form

$$
X_{0} X_{2}^{2}=X_{1}^{3}+a X_{0}^{2} X_{1}+b X_{0}^{3}
$$

for some $a, b \in K$. In other words, any smooth cubic curve over \mathbb{A}_{K}^{2} is projectively equivalent to a cubic curve given by

$$
X_{2}^{2}=X_{1}^{3}+a X_{1}+b
$$

Proof. Let C be given by the homogeneous polynomial of degree $3 F \in K\left[X_{0}, X_{1}, X_{2}\right]$. By Proposition 5.1, there exists $P \in \mathbb{P}_{K}^{2}$ such that

$$
\begin{equation*}
F(P)=\operatorname{Hess}_{F}(P)=0 \tag{2}
\end{equation*}
$$

We may choose coordinates so that $P=[0: 0: 1]$ and the line $X_{0}=0$ is tangent to the curve C at P. Now write F in the following form:

$$
F=F_{1}\left(X_{0}, X_{1}\right) X_{2}^{2}+F_{2}\left(X_{0}, X_{1}\right) X_{2}+F_{3}\left(X_{0}, X_{1}\right)
$$

where the $F_{i} \in K\left[X_{0}, X_{1}\right]$ are homogeneous of degree i. Since C is smooth, F must be smooth at P and it is thus clear from the above form of the equation that the tangent line to F at P must be given by $F_{1}\left[X_{0}, X_{1}\right]=0$. But the coordinates were chosen so that $X_{0}=0$ is the tangent line of F at P so we must have that $F_{1}\left[X_{0}, X_{1}\right]=c X_{0}$. Without loss of generality, we may assume that $c=-1$. We now have the curve in the following form:

$$
0=-X_{0} X_{2}^{2}+\left(a X_{0}^{2}+b X_{0} X_{1}+c X_{1}^{2}\right) X_{2}+F_{3}\left(X_{0}, X_{1}\right)
$$

By Equation 2 we have

$$
\operatorname{Hess}_{F}(P)=\operatorname{det}\left(\begin{array}{ccc}
2 a & b & -2 \\
b & 2 c & 0 \\
-2 & 0 & 0
\end{array}\right)=-8 c
$$

We must therefore have that $c=0$. Passing to affine space, we have the equation

$$
X_{2}^{2}=a X_{2}+b X_{1} X_{2}+F_{3}\left(1, X_{1}\right)
$$

Completing the square in X_{2} and rearranging gives us

$$
\left(X_{2}-\frac{a+b X_{1}}{2}\right)^{2}=\left(\frac{a+b X_{1}}{2}\right)^{2}=F_{3}\left(1, X_{1}\right)
$$

We may finally make a linear change of coordinates to bring the equation into the form

$$
X_{2}^{2}=X_{1}^{3}+a X_{1}+b
$$

for some $a, b \in K$. Passing to the homogeneous completion of this equation gives us the desired equation for the cubic curve over projective space.

Definition 5.7. Let K be a field and $F \in K\left[X_{0}, X_{1}, X_{2}\right]$ be a homogeneous polynomial. We say that a point P on the curve $F=0$ is an inflection point if $\operatorname{Hess}_{F}(P)=0$.

Proposition 5.8. Let K be a field and $p_{1}, \ldots, p_{8} \in \mathbb{P}_{K}^{2}$ be points such that no 4 lie on one line and no 7 lie on one conic. If M is the linear subspace of $K\left[X_{0}, X_{1}, X_{2}\right]$ consisting of homogeneous polynomials of degree 3 that vanish at the p_{i} then $\operatorname{dim}(M)=2$.

Proof. Let L be the linear subspace of $K\left[X_{0}, X_{1}, X_{2}\right]$ consisting of all homogeneous polynomials of degree 3. By Lemma 2.2, this has dimension 10. Hence by Lemma 2.3, we have $\operatorname{dim}(M) \geq 2$. Hence assume that $\operatorname{dim}(M)>3$. We shall consider 3 seperate cases.

First suppose that no 3 points lie on one line and no 6 points lie on one conic. Let $L=0$ denote the line passing through p_{1} and p_{2}. Let q and r be two distinct points, neither of which are equal to p_{1} or p_{2}. We can always construct an $F \in M$ that vanishes at both q and r. Hence the cubic $F=0$ intersects $L=0$ in 4 points. By Bézout's Theorem, F must be reducible and we have $F=L Q$ where Q is some conic. We cannot have that p_{3}, \ldots, p_{8} lie on L so they must lie on Q. But by assumption, no 6 points lie on one conic whence we arrive at a contradiction.

Now suppose that 3 points p_{1}, \ldots, p_{3} lie on one line, say $L=0$. Let Q be the unique conic passing through p_{4}, \ldots, p_{8}. Note that $F=L Q \in M$. Since $\operatorname{dim}(M)>2$, we can find F_{1} and F_{2} such that F, F_{1} and F_{2} are linearly independent. Now let p be a point on L distinct from p_{1}, \ldots, p_{3}. We can always find a linear combination of F_{1} and F_{2} that vanishes at p. By Bézout's Theorem, we must have that such a linear combination is divisible by L. But then this linear combination is proportional to F which is a contradiction to their pairwise linear independence.

Finally, suppose that 6 of the points p_{1}, \ldots, p_{6} lie on one conic. Here the argumentation follows the previous case where we take L to be the line through p_{7} and p_{8}.

We see that in all cases, we arrive at contradictions so we must have that $\operatorname{dim}(M)=2$.

6 Group Law for Cubics

Let K be a field and C a cubic curve over \mathbb{P}_{K}^{2}. We shall define the structure of an abelian group on C as follows:

Fix a distinguished point $O \in C$. This will act as the identity. Let P and Q be arbitrary points on C. Let L be the line through P and Q. If L intersects C at a third point, then denote it $P * Q$. If not then L is tangent to C at P so let $P * Q=P$. Now let M be the line through O and $P * Q$. We let $P+Q$ be the third point of intersection of this line with C. In other words, $P+Q=O *(P * Q)$.

Proposition 6.1. Let K be a field and C a smooth cubic curve over \mathbb{P}_{K}^{2}. Then $(C,+)$ is an abelian group.

Proof. The commutativity is clear from the definition of + . Furthermore, it is clear that $O+P=P$. Indeed, $O+P=O *(O * P)$. Now, the line joining O and P contains a point, say M. But the line joining M and O must also contain P.

We must now check associativity of + . Let $F \in K\left[X_{0}, X_{1}, X_{2}\right]$ be the polynomial defining C. Let $P, Q, R \in C$. We need to show that $P+(Q+R)=(P+Q)+R$. In other words, $O *(P *(Q+R))=O *((P+Q) * R)$. This reduces to showing that $P *(Q+R)=(P+Q) * R$.

Let $F_{1}=0$ be the cubic given by the composition of the three lines $(P, Q),(O, Q+$ $R),(R, P+Q)$. Let $F_{2}=0$ be the cubic given by the composition of the three lines $(Q, R),(O, P+Q),(P, Q+R)$. We note that $O, P, Q, R,(P * Q),(P+Q),(Q * R),(Q+R)$ all lie on the three cubics $F=0, F_{1}=0$ and $F_{2}=0$.

Now if 4 of those points were to lie on the same line then C would contain the line that passess through these points and C would be reducible which is a contradiction to the fact that C is smooth. The same argumentation shows that no 7 of the points lie on one conic. Appealing to Proposition 5.8, we see that F, F_{1} and F_{2} must be linearly dependent over K. Hence we may write

$$
F_{2}=a F+b F_{1}
$$

for some $a, b \in K$. Now, both F and F_{1} vanish at the point $(P+Q) * R$ whence F_{2} does too. But this is only possible if $(P+Q) * R=P *(Q+R)$.

Finally, we must prove that inverses exist. Let $P \in C$. If O is not an inflection point of C then the tangent line to C at O intersects C in some other point, say O^{*}. Then we have $-P=O^{*} * P$. If O is an inflection point then $-P=O * P$.

7 Higher Dimensional Varieties

Definition 7.1. Let K be a field. We define the Segre map to be

$$
\begin{aligned}
\sigma: \mathbb{P}_{K}^{n} \times \mathbb{P}_{K}^{m} & \rightarrow \mathbb{P}_{K}^{(n+1)(m+1)-1} \\
\left(\left[x_{0}: \ldots: x_{n}\right],\left[y_{0}: \ldots: y_{m}\right]\right) & \mapsto\left[x_{0} y_{0}: \ldots: x_{i} y_{j}: \ldots: x_{n} y_{m}\right]
\end{aligned}
$$

The image of this map is written $\sum_{n, m}$.
Proposition 7.2. Let K be a field. Then the image of the Segre embedding $\sum_{n, m} \subseteq$ $\mathbb{P}_{K}^{(n+1)(m+1)-1}$, given in homogeneous coordinates $\left[Z_{00}: \ldots: Z_{i j}: \ldots: Z_{n m}\right]$ is a projective variety given by the system of homogeneous equations

$$
Z_{i j} Z_{k l}-Z_{i l} Z_{k j}=0
$$

Proof. Let M be the set of all $(n+1) \times(m+1)$-dimensional matrices over K. Define an equivalence relationship on M, say \sim, where $A \sim B$ if and only if $A=\lambda B$ for some $\lambda \in K^{\times}$. It is easy to see that $\sum_{n, m}$ is the set of all \sim-equivalence classes of matrices of rank 1 . Indeed, any element of $\mathbb{P}_{K}^{(n+1)(m+1)-1}$ is given by homogeneous coordinates which are invariant under multiplication by scalars. To see that the equivalence classes we are considering are of rank 1 , we need only consider the matrix $Z_{i j}=X_{i} Y_{j}$. Any row is necessarily a linear combination of some other row in this matrix whence the rank is at most 1 . But we cannot have that all entries of the matrix are 0 since we are working in projective space so the matrix cannot have rank 0 .

Now, any 2×2 minor in a rank 1 matrix must be 0 and we therefore must have that $Z_{i j} Z_{k l}-Z_{i l} Z_{k j}=0$. Conversely, if any 2×2 minor of a matrix is 0 then such a matrix must have rank 1. It then follows that $\sigma_{n, m}$ is a projective variety given by $Z_{i j} Z_{k l}-Z_{i l} Z_{k j}=0$.
Corollary 7.3. Let K be a field and $X \subseteq \mathbb{P}_{K}^{n}$ and $Y \subseteq \mathbb{P}_{K}^{m}$ projective varieties. Then $\sigma(X \times Y) \subseteq \mathbb{P}_{K}^{(n+1)(m+1)-1}$ is a projective variety.
Proof. We first observe that we can write $X \times Y=X \times \mathbb{P}_{K}^{m} \cap \mathbb{P}_{K}^{n} \times Y$. It thus suffices to prove the corollary for the product $X \times \mathbb{P}_{K}^{m}$. Furthermore, we may assume that X is a hypersurface since any variety is necessarily the intersection of hypersurfaces. Hence X is given by some $F \in K\left[X_{0}, \ldots, X_{n}\right]$. It then follows that $\sigma\left(X \times \mathbb{P}_{K}^{m}\right)$ is given by the intersection of $\sigma\left(\mathbb{P}_{K}^{n} \times \mathbb{P}_{K}^{m}\right)$ with the hypersurfaces $F\left(Z_{0 i}, \ldots, Z_{n i}\right)$ for $0 \leq i \leq m$.

Recall that given a field K, we can construct the space of so-called bivectors of a vector space V of dimension n over K, denoted $\Lambda^{2} V$. If vectors are line segments then bivectors can be geometrically interpreted as plane segments. Such bi-vectors are constructed using the wedge product \wedge on two vectors $u, v \in V$ subject to the relations

$$
(\alpha \cdot u) \wedge v=\alpha(u \wedge v), \quad u \wedge v=-v \wedge u
$$

If e_{1}, \ldots, e_{n} is a K-basis for V then any bivector w can be expressed as

$$
w=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} e_{i} \wedge e_{j}
$$

for some $a_{i j} \in K$. Note that the properties of a bivector impose the condition $w \wedge w=0$ for any bivector w.
Definition 7.4. Let K be a field. We define the Grassmannian (\mathbf{m}, \mathbf{n}) over K to be the set of all m-dimensional linear subspaces of \mathbb{A}_{K}^{n}. This is equivalent to all the m-1-dimensional linear subspaces of \mathbb{P}_{K}^{n-1}.
Proposition 7.5. Let K be a field. Then the Grassmannian $(2,4)$ over K can be naturally identified with a quadratic hypersurface in \mathbb{P}_{K}^{5}.
Proof. To each two dimensional subspace of \mathbb{A}_{K}^{4}, we may associate a bivector $w=u \wedge v$ where $u, v \in \mathbb{A}_{K}^{4}$ are non-proportional vectors. We may write

$$
w=a_{12} e_{1} \wedge e_{2}+\cdots+a_{34} e_{3} \wedge e_{4}
$$

Since $w \wedge w=0$, we arrive at the following:

$$
a_{12} a_{34}\left(e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}\right)+a_{13} a_{24}\left(e_{1} \wedge e_{3} \wedge e_{2} \wedge e_{4}\right)+a_{14} a_{23}\left(e_{1} \wedge e_{4} \wedge e_{2} \wedge e_{3}\right)=0
$$

Using the fact that $u \wedge v=-v \wedge u$ we have

$$
\left(a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23}\right)\left(e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}\right)=0
$$

and so we have $a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23}=0$. Passing to the coordinate system of \mathbb{P}_{K}^{5} we can write this as $X_{0} X_{1}-X_{2} X_{3}+X_{4} X_{5}=0$.

8 Hilbert's Basis Theorem

Definition 8.1. Let R be a ring and $I \triangleleft R$ an ideal. We define the radical of I to be

$$
\sqrt{I}=\left\{r \in R \mid r^{n} \in I \text { for some } n \in \mathbb{N}\right\}
$$

We say that I is radical if $I=\sqrt{I}$.
Definition 8.2. Let R be a ring. Then R is Noetherian if every ideal of R is finitely generated.

Lemma 8.3. Let R be a ring. Then the following conditions are equivalent:

1. R is Noetherian
2. Every ascending chain of ideals of R is stationary
3. Every non-empty set of ideals of R has a maximal element.

Proof. We first show that $(1) \Longrightarrow(2)$. Suppose that R is Noetherian and let

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots
$$

be an ascending chain of ideals in R. Let I be the union of the I_{j} for all $j \geq 1$. Then I is an ideal and, since R is Noetherian, it is finitely generated say by $a_{1}, \ldots, a_{n} \in R$. Now, for all $1 \leq i \leq n$ there exists a $j \geq 1$ such that $a_{i} \in I_{j}$. Let I_{k} be the largest such ideal. Then I_{k} contains all a_{1}, \ldots, a_{n} whence $I \subseteq I_{k}$. We also have the trivial inclusion $I_{k} \subseteq I$ and we see that the chain is stationary.

We now show that $(2) \Longrightarrow(3)$. Let \mathcal{I} be a non-empty set of ideals of R. Choose an ideal $I_{1} \in \mathcal{I}$. If I_{1} is maximal then we are done. If not then $\mathcal{I} \backslash I_{1}$ is non-empty and we may choose I_{2} such that $I_{1} \subseteq I_{2}$. We may continue in this fashion, forming an ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq I_{3} \ldots$ By assumption, this chain is stationary at some I_{k}. Then this I_{k} is the desired maximal element of \mathcal{I}.

Finally, we show that $(3) \Longrightarrow(1)$. Suppose that every non-empty set of ideals of R has a maximal element. Let $I \triangleleft R$ be an ideal. Denote

$$
\mathcal{I}=\{J \subseteq I \mid J \triangleleft R \text { and } J \text { is finitely generated }\}
$$

Clearly \mathcal{I} is non-empty since it contains the zero ideal. By assumption, we may choose a maximal element of \mathcal{I}, say J. If $I=J$ then we are done. If not then consider $a \in I \backslash J$. Then $(J,\{a\})$ is a finitely generated ideal contained in I which contains J. This is a contradiction to the maximality of J. Hence $I=J$ and I is Noetherian.

Theorem 8.4 (Hilbert's Basis Theorem). Let R be a Noetherian ring. Then $R[X]$ is Noetherian.

Proof. Let $I \triangleleft R[X]$ be an ideal. We need to show that I is finitely generated. To this end, let I^{\prime} be the ideal in R generated by the leading coefficients of polynomials from I. Since R is Noetherian, we must have that $I^{\prime}=\left(a_{1}, \ldots, a_{s}\right)$ for some $a_{i} \in R$.

Let $f_{1}, \ldots, f_{s} \in I$ be polynomials whose leading coefficients are the a_{i}. Let N be the maximal degree of the polynomials f_{i}.

Let $J=\left(f_{1}, \ldots, f_{n}\right) \triangleleft R[X]$. Then for all $f \in I$, there exists a $g \in J$ such that $\operatorname{deg}(f-g)<$ N. Hence if $R[X]^{<N}$ is the linear subspace of $R[X]$ consisting of all polynomials of degree less than N, we see that I is generated by f_{1}, \ldots, f_{s} and $I \cap R[X]^{<N}$. We can then repeat the same process restricted to $R[X]^{<N}$ to see that there exist some f_{s+1}, \ldots, f_{t} such that I is generated by f_{1}, \ldots, f_{t} and $I \cap R[X]^{<N-1}$. Continuing in this way, we obtain finitely many generators for I.

Corollary 8.5. Let R be a Noetherian ring. Then $R\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian.
Corollary 8.6. Let R be a ring and M a finitely generated R-module. Then M is Noetherian.

9 Varieties and Hilbert Nullstellensatz

Definition 9.1. Let K be a field and $V \subseteq \mathbb{A}_{K}^{n}$ a subset. We say that V is a affine variety if there exist polynomials $f_{1}, \ldots, f_{m} \in K\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
V=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}_{K}^{n} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=0 \text { for } 1 \leq i \leq m\right\}
$$

Definition 9.2. Let K be a field and $I \triangleleft K\left[X_{1}, \ldots, X_{n}\right]$ an ideal. We can define an affine variety attached to I by

$$
V(I)=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{A}_{K}^{n} \mid f\left(a_{0}, \ldots, a_{n}\right)=0 \forall f \in I\right\}
$$

Remark. The above definition makes sense since Hilbert's Basis Theorem guarantees that every ideal of $K\left[X_{1}, \ldots, X_{n}\right]$ is finitely generated and thus there exist finitely many polynomials defining $V(I)$.

Proposition 9.3. Let K be a field and denote $I, J \triangleleft R=K\left[X_{1}, \ldots, X_{n}\right]$ ideals. Then

1. $V(\{0\})=\mathbb{A}_{K}^{n}, V(R)=\varnothing$
2. If $I \subseteq J$ then $V(J) \subseteq V(I)$
3. $V(I) \cup V(J)=V(I \cap J)$
4. $\bigcap_{n} V\left(I_{n}\right)=V\left(\prod_{n} I_{n}\right)$

Proof.
Part 1: $V(\{0\})=\mathbb{A}_{K}^{n}$ holds since the zero polynomial will vanish at any point of \mathbb{A}_{K}^{n}. Conversely, the ring R cannot be generated by finitely many non-constant polynomials so we must have that $V(R)=\varnothing$.
Part 2: If $I \subseteq J$ then, clearly, J has at least the same number of generators as I. In the case that $I=J$, it is clear that $V(J)=V(I)$. In the case that $I \subsetneq J$ then J must have more generators and thus there are more polynomials which define the variety $V(J)$. Having more polynomials means the freedom of choice of elements of \mathbb{A}_{K}^{n} is reduced so we must have that $V(J) \subseteq V(J)$.
Part 3: We have $I \cap J \subseteq I$ and so, Part 2 implies that $V(I) \subseteq V(I \cap J)$. Similarly, $V(J) \subseteq V(I \cap J)$. Hence $V(I) \cup V(J) \subseteq V(I \cap J)$.

Conversely, suppose that $P \in V(I \cap J)$ and assume that $P \notin V(I)$. Then there exists $f \in I$ such that $f(P) \neq 0$. By a similar argumentation, there exists $g \in J$ such that $g(P) \neq 0$. Then $f \circ g \in I \cap J$ but $(f \circ g)(P) \neq 0$ which is a contradiction.
Part 4: Suppose $P \in \bigcap_{n} V\left(I_{n}\right)$. Then for each n, there exists a finite number of polynomials in I_{n}, say $f_{1}^{(n)}, \ldots, f_{N}^{(n)}$ which vanish at P. Clearly, any finite linear combination of such polynomials must vanish at P whence $P \in V\left(\prod_{n} I_{n}\right)$.

Conversely, suppose that $P \in V\left(\prod_{n} I_{n}\right)$. Clearly, $I_{n} \subseteq \prod_{n} I_{n}$. It then follows by Part 2 that $V\left(\prod_{n} I_{n}\right) \subseteq V\left(I_{n}\right)$ for all n. Hence $V\left(\prod_{n} I_{n}\right) \subseteq \bigcap_{n} V\left(I_{n}\right)$.

Proposition 9.4. Let K be a field. Then defining the $V(I)$ to be closed sets of \mathbb{A}_{K}^{n} defines a topology τ_{Z} on \mathbb{A}_{K}^{n} called the Zariski Topology.

Proof. In order to show that the Zariski Topology is indeed a Topology, we need to prove

1. $\mathbb{A}_{K}^{n}, \varnothing \in \tau_{Z}$
2. Any intersection of elements of τ_{Z} is again an element of τ_{Z}
3. Finite unions of elements of τ_{Z} is again an element of τ_{Z}

By 9.3 we know that $V(\{0\})=\mathbb{A}_{K}^{n}$ and thus $\mathbb{A}_{K}^{n} \in \tau_{Z}$. Furthermore, the empty set is vacuously an affine variety so also $\varnothing \in \tau_{Z}$.

Now let $\left\{V_{n}\right\}_{n \in \mathbb{N}}$ be a collection of elements of τ_{Z}. We have $\bigcap_{n} V_{n}=V\left(\prod_{n} I_{n}\right)$ and so $\bigcap_{n} V_{n} \in \tau_{Z}$.

Finally, let $V\left(I_{1}\right), \ldots, V\left(I_{n}\right) \in \tau_{Z}$. Then $V\left(I_{1}\right) \cup \cdots \cup V\left(I_{n}\right)=V\left(I_{1} \cup \cdots \cup I_{n}\right)$ and so $V\left(I_{1}\right) \cup \cdots \cup V\left(I_{n}\right) \in \tau_{Z}$.

Proposition 9.5. Let K be a field. Then any polynomial mapping on \mathbb{A}_{K} is continuous with respect to the Zariski Topology.

Proof. Recall that a mapping is continuous with respect to some topology if and only if the preimage of any closed set is closed. Let $f \in K\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial. Let $X \in \tau_{Z}$ be a closed set. We need to show that the preimage of $f(X)$ is in τ_{Z}. Recall that the closed sets of τ_{Z} are exactly the affine varieties. Hence X is defined by some polynomials $h_{1}, \ldots, h_{N} \in K\left[X_{1}, \ldots, X_{n}\right]$. Now, $x \in f^{-1}(X)$ if and only if $f(x) \in X$ if and only if $h_{i}(f(x))=0$ for all $1 \leq i \leq N$. This then means that $f^{-1}(X)$ is defined by the equations $h_{1} \circ f, \ldots, h_{N} \circ f$ which means that $f^{-1}(X)$ is an affine variety and is thus in τ_{Z}. Hence f is a continuous mapping with respect to the Zariski Topology.

Definition 9.6. Let K be a field and $V \subseteq \mathbb{A}_{K}$ an affine variety. We define the vanishing ideal of V to be

$$
I(V)=\left\{f \in K\left[X_{1}, \ldots, X_{n}\right] \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \forall\left(a_{1}, \ldots, a_{n}\right) \in V\right\}
$$

Proposition 9.7. Let K be a field and $V \subseteq \mathbb{A}_{K}^{n}$ a variety. Then $I(V)$ is a radical ideal.
Proof. Suppose that $f \in \sqrt{V(I)}$. Then $f^{n} \in V(I)$ for some $n \in \mathbb{N}$. Hence there exists a point $P \in V$ at which f^{n} vanishes. But then so f also vanishes at P and thus $f \in V(I)$ as required.

Proposition 9.8. Let K be a field and $V \subseteq \mathbb{A}_{K}^{n}$ an affine variety. Then

1. $V(I(V))=V$
2. $I(V(I)) \subseteq I$
3. If I is non-radical then $I(V(I)) \subsetneq I$

Proof.
Part 1: Suppose that $f \in I(V)$. Then by definition, f vanishes on V so $V \subseteq V(I(V))$.
Conversely, suppose $P \notin V$. Then, since V is given by some $f_{1}, \ldots, f_{n} \in K\left[X_{1}, \ldots, X_{n}\right]$, there must exist an f_{i} such that $f_{i}(P) \neq 0$. But $f_{i} \in I(V)$ so we must have that $P \notin V(I(V))$.
Part 2: Suppose that $f \in I(V(I))$. Then, by definition, there exists a $P \in V(I)$ such that $f(P)=0$. It then follows that $f \in I$.
Part 3: By Part 2 we have that $I(V(I)) \subseteq I$. By Proposition 9.7 we know that $I(V(I))$ is radical. Hence if I is not radical, we cannot have that $I(V(I))=I$ so we must have that $I(V(I)) \subsetneq I$.

Theorem 9.9 (Hilbert's Nullstellensatz). Let K be an algebraically closed field and $I \triangleleft$ $K\left[X_{1}, \ldots, X_{n}\right]$ an ideal. Then $I(V(I))=\sqrt{I}$.

This theorem has the following meaning. If K is an algebraically closed field and $F_{1}, \ldots, F_{m}, G \in K\left[X_{1}, \ldots, X_{n}\right]$ are such that G vanishes whenever all the F_{i} vanish then there exists an $N>0$ such that

$$
G^{N}=A_{1} F_{1}+\cdots+A_{m} F_{m}
$$

for some $A_{i} \in K\left[X_{1}, \ldots, X_{n}\right]$.
Corollary 9.10. Let K be algebraically closed and $I \triangleleft K\left[X_{1}, \ldots, X_{n}\right]$ an ideal. Then $V(I)$ is empty if and only if there exist $f_{1}, \ldots, f_{k} \in I$ and $g_{1}, \ldots, g_{k} \in K\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
\sum_{i=1}^{k} f_{i} g_{i}=1
$$

Proof. If we are able to write 1 as a linear combination of the f_{i} then, clearly, the f_{i} cannot vanish simultaneously and so $V(I)=\varnothing$.

Conversely, suppose that $V(I)=\varnothing$. We need to show that $1 \in I$. By the Nullstellensatz we have that $\sqrt{I}=I(V(I))=I(\varnothing)=K\left[X_{1}, \ldots, X_{n}\right]$. Hence $1^{n} \in I$ for some $n>0$ whence $1 \in I$.

Corollary 9.11. Let K be an algebraically closed field. Then every maximal ideal of $K\left[X_{1}, \ldots, X_{n}\right]$ is of the form

$$
\mathfrak{m}_{a}=\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)
$$

for some $a_{i} \in K$.
Proof. It is clear that $K\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{m}_{a}=K$ and thus \mathfrak{m}_{a} is a maximal ideal.
Conversely, suppose that $I \triangleleft K$ is a maximal ideal. Then $1 \notin I$. Appealing to Corollary 9.10 we see that $V(I)$ contains at least one point $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}_{K}^{n}$. hence we must have that $I \subseteq \mathfrak{m}_{a}$. But I is maximal so $I=\mathfrak{m}_{a}$.

Corollary 9.12. Let K be an algebraically closed field and $f, g \in K\left[X_{1}, \ldots, X_{n}\right]$. If f is irreducible and g vanishes on the hypersurface $f\left(X_{0}, \ldots, X_{n}\right)=0$ then f divides g.
Proof. We have that $I(V(f))=\sqrt{(f)}$. Since g vanishes on $f=0$ we have that $g \in \sqrt{(f)}$. Then $g^{n} \in(f)$ for some $n>0$. But $K\left[X_{1}, \ldots, X_{n}\right]$ is a UFD so $g \in(f)$.
Definition 9.13. Let K be a field and $V \subseteq \mathbb{A}_{K}^{n}$ an affine variety. We say that V is irreducible if it cannot be expressed as $V=V_{1} \cup V_{2}$ where $V_{i} \subsetneq$ are proper affine V subvarieties.

Proposition 9.14. Let K be a field and $V \subseteq \mathbb{A}_{K}^{n}$ a variety. Then V is irreducible if $I(V)$ is prime.

Proof. Suppose that $I(V)$ is not prime. We can then find $f_{1}, f_{2} \notin I(V)$ such that $f_{1} f_{2} \in$ $I(V)$. Then for all $P \in V$ we have $f_{1}(P) f_{2}(P)=0$. But $K\left[X_{1}, \ldots, X_{n}\right]$ is an integral domain so either $f_{1}(P)=0$ or $f_{2}(P)=0$. This implies that either $P \in V\left(F_{1}\right)$ or $P \in V\left(F_{2}\right)$. Furthermore, $f_{i} \notin V$ means that $V\left(f_{i}\right) \neq V$ so we have a decomposition

$$
V=\left(V \cap V\left(f_{1}\right)\right) \cup\left(V \cap V\left(f_{2}\right)\right)
$$

and thus V is reducible.
Conversely, suppose that $I(V)$ is prime and assume, for a contradiction, that $V=V_{1} \cup V_{2}$ for some proper affine V-subvarieties V_{1}, V_{2}. Let $I_{i}=I\left(V_{i}\right)$. Then $V\left(I_{i}\right)=V_{i}$ and thus $V(I(V))=V=V_{1} \cup V_{2}=V\left(I_{1}\right) \cup V\left(I_{2}\right)=V\left(I_{1} \cap I_{2}\right)$. Now, $V(I), I_{1}$ and I_{2} are all radical so by the Nullstellensatz, we must have that $I(V)=I_{1} \cap I_{2}$. Furthermore, $I(V) \subsetneq I_{1}, I_{2}$ so there exists $f_{1} \in I_{1} \backslash I(V)$ and $f_{2} \in I_{2} \backslash I(V)$. Then $f_{1} f_{2} \in I_{1} \cap I_{2}=I(V)$ which is a contradiction to the fact that $I(V)$ is prime.
Definition 9.15. Let K be a field and $V \subseteq \mathbb{A}_{K}^{n}$ an affine variety. We define the coordinate ring of V to be

$$
K[V]=K\left[X_{1}, \ldots, X_{n}\right] / I(V)
$$

Proposition 9.16. Let K be an algebraically closed field and $V \subseteq \mathbb{A}_{K}^{n}$ an affine variety. Then there is a one-to-one correspondence between the elements of V and the maximal ideals of $K[V]$.

Proof. Recall that there is a one-to-one correspondence between the ideals of $K\left[X_{1}, \ldots, X_{n}\right] / I(V)$ and the ideals of $K\left[X_{1}, \ldots, X_{n}\right]$ containing $I(V)$. This in turn implies that there is a one-to-one correspondence between the maximal ideals of $K\left[X_{1}, \ldots, X_{n}\right] / I(V)$ and the maximal ideals of $K\left[X_{1}, \ldots, X_{n}\right]$ containing $I(V)$. By Corollary 9.11 every maximal ideal of $K\left[X_{1}, \ldots, X_{n}\right]$ is of the form $\mathfrak{m}_{a}=\left(X-a_{1}, \ldots, X-a_{n}\right)$ for some $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}_{K}^{n}$. But \mathfrak{m}_{a} contains $I(V)$ if and only if $a \in V$. Putting these facts together gives us the one-to-one correspondence between points of V and maximal ideals of $K[V]$.

10 Hilbert Functions and Hilbert Polynomials

Definition 10.1. Let R be a ring. We say that R is graded if there exist a collection of abelian groups $\left\{R_{i}\right\}$ such that

$$
R=\bigoplus_{i} R_{i}
$$

and the following properties hold:

1. $R_{i} R_{j} \subseteq R_{i+j}$
2. Any $r \in R$ can be expressed as a finite sum of elements in some of the R_{i}

Any element $r \in R_{i}$ is said to be a homogeneous element. A homogeneous ideal is one generated by a homogeneous element of a graded ring.

Example 10.2. Let K be a field. Then $K\left[X_{1}, \ldots, X_{n}\right]$ is a graded ring. Indeed

$$
K\left[X_{1}, \ldots, X_{n}\right]=\bigoplus_{i} R_{i}
$$

where R_{i} is the vector space of homogeneous polynomials of degree i.
Definition 10.3. Let R be a graded ring such that R_{0} is a field K, R is generated by $R_{0} \oplus R_{1}$ and R_{1} is finite-dimensional over K. Then we shall refer to R as an admissible graded ring.

Definition 10.4. Let R be an admissible graded ring. We define the Hilbert function of R to be

$$
h_{R}(d)=\operatorname{dim}_{R_{0}}\left(R_{d}\right)
$$

Example 10.5. Consider $R=K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$. Then R is admissible and

$$
h_{R}(d)=\binom{n+d}{d}=\frac{(d+1) \ldots(d+n)}{n!}
$$

Definition 10.6. Let K be a field and $X \subseteq \mathbb{P}_{K}^{n}$ a projective variety. We define the homogeneous vanishing ideal of X to be

$$
I(X)=\left\{f \in K\left[X_{0}, \ldots, X_{n}\right] \mid f\left(a_{0}, \ldots, a_{n}\right)=0 \forall\left[a_{0}: \ldots: a_{n}\right] \in \mathbb{P}_{K}^{n}\right\}
$$

We define the homogeneous coordinate ring of X to be

$$
S(X)=K\left[X_{0}, \ldots, X_{n}\right] / I(X)
$$

Proposition 10.7. Let K be a field and $X \subseteq \mathbb{P}) K^{n}$ a projective variety. Then the homogeneous ideal and homogeneous coordinate ring of X admissible graded rings.

Proof. The homogeneous components of $I(X)$, say $I(X)_{d}$ are exactly the homogeneous polynomials of degree d that vanish on X.

Let K_{n} be the space of all homogeneous polynomials of degree d. Then the homogeneous components of $S(X)$ are $K_{d} / I(X)_{d}$.

Definition 10.8. Let K be a field and $X \subseteq \mathbb{P}_{K}^{n}$ a projective variety. Let $I=I(X)$ be the homogeneous ideal of X. We define the Hilbert function of X, denoted $h_{X}(d)$ to be the Hilbert function of its homogeneous coordinate ring. More generally, if I is a homogeneous ideal then we define its Hilbert function to be the Hilbert function of $K\left[X_{0}, \ldots, X_{n}\right] / I$.

Example 10.9. Let K be a field and consider $X=\mathbb{P}_{K}^{n}$ as a variety over itself. Then $I(X)=\varnothing$. Indeed, there does not exist finitely many polynomials that simultaneously vanish at all points of \mathbb{P}_{K}^{n}. Then $S(X)=K\left[X_{0}, X_{1}, \ldots, X_{n}\right] / \varnothing=K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$.

Example 10.10. Let K be a field and $p_{1}, p_{2}, p_{3} \in \mathbb{P}_{K}^{2}$ distinct points. Let $I=I(X)$. We are interested in determining $h_{I}(d)$. First suppose that $d=1$. If K_{n} is the $n^{\text {th }}$ homogeneous component of $K\left[X_{0}, X_{1}, X_{2}\right]$ we have that

$$
\left.h_{I}(1)=\operatorname{dim}_{K}\left(K_{1} / I_{1}\right)=\operatorname{dim}_{K}\left(K_{1}\right)-\operatorname{dim}_{K}\left(I_{1}\right)=3-\operatorname{dim}\right) K\left(I_{1}\right)
$$

Now I_{1} is the space of homogeneous polynomials of degree 1 that vanish at p_{1}, p_{2}, p_{3}. This space is non-trivial, and has dimension 1 , if and only if p_{1}, p_{2}, p_{3} are colinear. Hence we have that

$$
h_{I}(1)= \begin{cases}2 & \text { if } p_{1}, p_{2}, p_{3} \text { are colinear } \\ 3 & \text { if otherwise }\end{cases}
$$

Now suppose that $d=2$. We claim that $h_{I}(2)=3$ regardless of whether the points are colinear or not. Fix representatives $v_{1}, v_{2}, v_{3} \in \mathbb{A}_{K}^{3} \backslash\{0\}$. We define a mapping

$$
\varphi: K_{2} \rightarrow \mathbb{A}_{K}^{3}
$$

where we evaluate a polynomial in K_{2} at each of the points v_{1}, v_{2}, v_{3}. Now, we can multiply a linear homogeneous polymnomial vanishing at p_{1} but not p_{3} by a linear homogeneous polynomial vanishing at p_{2} but not p_{3} to get a homogeneous quadratic polynomial vanishing at p_{1} and p_{2} but not p_{3}. We can repeat this process to find homogeneous quadratic polynomials that vanish at any 2 of the 3 points. Hence the image of φ contains the standard basis vectors whence the image of φ is all of \mathbb{A}_{K}^{3}. We then have that

$$
\begin{aligned}
h_{I}(2)=\operatorname{dim}_{K}\left(K_{2} / I_{2}\right)=\operatorname{dim}_{K}\left(K_{2}\right)-\operatorname{dim}_{K}\left(I_{2}\right) & =\operatorname{dim}_{K}\left(K_{2}\right)-\operatorname{dim}_{K}(\operatorname{ker}(\varphi)) \\
& =\operatorname{dim}_{K}(\operatorname{im}(\varphi))=3
\end{aligned}
$$

The same proof shows that $h_{I}(d)=3$ for all $d \geq 3$. We have those completely determined the Hilbert function for this projective variety.

Theorem 10.11. Let K be a field and $X \subseteq \mathbb{P}_{K}^{n}$ a projective variety (I a homogeneous ideal). Then for large enough $d, h_{X}(d)\left(h_{I}(d)\right)$ is a polynomial.

Definition 10.12. Let K be a field and $X \subseteq \mathbb{P}_{K}^{n}$ a projective variety. The unique polynomial $p_{X}(d)=h_{X}(d)$ is called the Hilbert polynomial of X. If $p_{X}(d)=a_{k} d^{k}+\cdots+a_{0}$ then the dimension of $\operatorname{dim} X$ is k. Furthermore, the degree of X is defined to be $\operatorname{deg} X=k!a_{k}$.

Proposition 10.13. Let K be an algebraically closed field and $F \in K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ an irreducible homogeneous polynomial of degree d. Let $X_{F} \subseteq \mathbb{P}_{K}^{n}$ be the hypersurface given by $F=0$. Then the Hilbert polynomial of X_{F} is

$$
p_{X_{F}}(m)=\binom{m+n}{n}-\binom{m+n-d}{n}
$$

Proof. The first term in the formula is the K-dimension of the space of homogeneous polynomials of degree m. It thus suffices to prove that the second term is the K-dimension of $I\left(X_{F}\right)_{m}$.
$I\left(X_{F}\right)_{m}$ consists of all homogeneous polynomials of degree m that vanish at the hypersurface $F=0$. By the Nullstellensatz we have

$$
I\left(X_{F}\right)=\sqrt{(F)}
$$

Now, F is irreducible so $\sqrt{(F)}=(F)$. Indeed, if $G^{k} \in(F)$ then $G^{k}=H F$ for some $H \in K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$. Since $K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ is a unique factorisation domain, we must have that $G=H^{\prime} F$ for some for some $H^{\prime} \in K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$. Letting K_{n} be the $n^{\text {th }}$ homogeneous component of $K\left[X_{1}, \ldots, X_{n}\right]$, we see that $I\left(X_{F}\right)_{m}=F K_{m-d}$ and we are done.

Remark. Note that the above proof relies on the fact that $\sqrt{(F)}=(F)$. This in fact holds for any F of the form $F=F_{1} \cdots F_{n}$ where each F_{i} is irreducible and pair-wise distinct.

Example 10.14. Let K be a field and $X \subseteq \mathbb{P}_{K}^{2}$ be the hypersurface given by a curve. Then

$$
h_{X}(m)=\binom{m+2}{2}-\binom{m+2-d}{2}=d m-\frac{d(d-3)}{2}
$$

11 Bézout's Theorem in Higher Dimensions

Lemma 11.1. Let K be a field and U, V, W vector spaces over K. If

$$
0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0
$$

is an exact sequence for some linear maps $f: U \rightarrow V$ and $g: V \rightarrow U$ then $\operatorname{dim}_{K}(V)=$ $\operatorname{dim}_{K}(U)+\operatorname{dim}_{K}(W)$.

Proof. We have

$$
\begin{aligned}
\operatorname{dim}_{K}(V)=\operatorname{dim}_{K}(\operatorname{ker}(g))+\operatorname{dim}_{K}(\operatorname{im}(g)) & =\operatorname{dim}_{K}(\operatorname{im}(f))+\operatorname{dim}_{K}(\operatorname{im}(g)) \\
& =\operatorname{dim}_{K}(U)+\operatorname{dim}_{K}(W)
\end{aligned}
$$

Proposition 11.2. Let K be a field and $I, J \triangleleft K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ homogeneous ideals. Then $h_{I \cap J}+h_{I+J}=h_{I}+h_{J}$.

Proof. We have the following exact sequence

$$
0 \longrightarrow R /(I \cap J) \longrightarrow R / I \times R / J \longrightarrow R /(I+J) \longrightarrow 0
$$

with the second map sending \bar{f} to (\bar{f}, \bar{f}) and the third map sending (\bar{f}, \bar{g}) to $\bar{f}-\bar{g}$. Passing to the $d^{\text {th }}$ homogeneous component in this sequence and applying Lemma 11.1 yields the formula.

Proposition 11.3. Let K be a field and $I \triangleleft K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ a homogeneous ideal. Let $f \in K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree e. Assume there exists a $d_{0} \in \mathbb{N}$ such that for all $g \in K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ of degree at least d_{0} with $f g \in I$ we have $g \in I$. Then $h_{I+(f)}(d)=h_{I}(d)-h_{I}(d-e)$ for almost all $d \in \mathbb{N}$.

Proof. Denote $R=K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$. Then for all d such that $d-e \geq d_{0}$ we have the following exact sequence

$$
0 \longrightarrow R_{d-e} / I_{d-e} \longrightarrow R_{d} / I_{d} \longrightarrow R_{d} /(I+(f))_{d} \longrightarrow 0
$$

with the first map given by multiplication by f and the second map given by the quotient map. The injectivity of the second map is guaranteed by the hypothesis of the theorem. The surjectivity of the third map is guaranteed by it being a quotient map. Appealing to Lemma 11.1 yields the formula.

Remark. Let K be a field and $X \subseteq \mathbb{P}_{K}^{n}$ a projective variety. Let $I=I(X)$ be the corresponding homogeneous ideal. Consider the irreducible decomposition $X=X_{1} \cup \cdots \cup X_{r}$ so that $I(X)=I\left(X_{1}\right) \cap \ldots I\left(X_{n}\right)$. Suppose that $F \in K\left[X_{0}, \ldots, X_{n}\right]$ does not vanish on any X_{i}. We shall show that the assumption of the previous proposition holds.

If f does not vanish on any of the X_{i} then \bar{f} is non-zero in $S\left(X_{i}\right)$ for all i. If $g f \in I$ then $g f \in I\left(X_{i}\right)$ for all i. So $\bar{g} \bar{f} \in S\left(X_{i}\right)$. But $S\left(X_{i}\right)$ is an integral domain and \bar{f} is non-zero so $\bar{g}=0$. This means that $g \in I\left(X_{i}\right)$ and thus $g \in I$.

Theorem 11.4. Let K be a field and $X \subseteq \mathbb{P}_{K}^{n}$ a projective variety of dimension at least 1. Let $f \in K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ be a homogeneous polynomial that does not vanish on any irreducible component of X. Then

$$
\operatorname{deg}(I(X)+(f))=\operatorname{deg}(X) \operatorname{deg}(f)
$$

Proof. Let $m=\operatorname{dim}(X)$. By definition, the Hilbert polynomial of X is

$$
p_{X}(d)=\frac{\operatorname{deg} X}{m!} d^{m}+a_{m-1} d^{m-1}+\cdots+a_{0}
$$

for some $a_{i} \in \mathbb{Q}$. Let $e=\operatorname{deg}(f)$. By the previous remark we can apply the lemma to see that

$$
\begin{aligned}
p_{I(X)+f}(d) & =p_{X}(d)-p_{X}(d-e) \\
& =\frac{\operatorname{deg}(X)}{m!}\left(d^{m}-(d-e)^{m}\right)+a m-1\left(d^{m-1}-(d-e)^{m-1}\right)+\ldots \\
& =\frac{e \operatorname{deg}(X)}{(m-1)!} d^{m-1}+\ldots
\end{aligned}
$$

Hence $\operatorname{deg}(I(X)+(f))=\operatorname{deg}(X) e=\operatorname{deg}(X) \operatorname{deg}(f)$.
Theorem 11.5. Let K be a field and $X_{1}, \ldots, X_{k} \subseteq \mathbb{P}_{K}^{n}$ projective varieties of dimensions n_{1}, \ldots, n_{k} and degrees d_{1}, \ldots, d_{k} respectively. Suppose that $\sum_{i} n-n_{i}$ and $X_{1} \cap \cdots \cap X_{k}$ has finite cardinality. Then this number is at most $d_{1} \cdots d_{k}$.

[^0]: ${ }^{1}$ here we assume that lines always intersect, possible at a so-called point at infinity. The reasoning for this will be clear once we study projective space.

